文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FAK 活性维持卵巢癌细胞对铂类化疗的内在和获得性耐药性。

FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy.

机构信息

Department of Obstetrics, Gynecology and Reproductive Sciences, Moores UCSD Cancer Center, La Jolla, United States.

State Key Laboratory of Cellular Stress Biology, Innovation Center for Cellular Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.

出版信息

Elife. 2019 Sep 3;8:e47327. doi: 10.7554/eLife.47327.


DOI:10.7554/eLife.47327
PMID:31478830
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6721800/
Abstract

Gene copy number alterations, tumor cell stemness, and the development of platinum chemotherapy resistance contribute to high-grade serous ovarian cancer (HGSOC) recurrence. Stem phenotypes involving Wnt-β-catenin, aldehyde dehydrogenase activities, intrinsic platinum resistance, and tumorsphere formation are here associated with spontaneous gains in , and (KMF) genes in a new aggressive murine model of ovarian cancer. Adhesion-independent FAK signaling sustained KMF and human tumorsphere proliferation as well as resistance to cisplatin cytotoxicity. Platinum-resistant tumorspheres can acquire a dependence on FAK for growth. Accordingly, increased FAK tyrosine phosphorylation was observed within HGSOC patient tumors surviving neo-adjuvant chemotherapy. Combining a FAK inhibitor with platinum overcame chemoresistance and triggered cell apoptosis. FAK transcriptomic analyses across knockout and reconstituted cells identified 135 targets, elevated in HGSOC, that were regulated by FAK activity and β-catenin including Myc, pluripotency and DNA repair genes. These studies reveal an oncogenic FAK signaling role supporting chemoresistance.

摘要

基因拷贝数改变、肿瘤细胞干性和铂类化疗耐药的发展导致高级别浆液性卵巢癌(HGSOC)复发。这里涉及 Wnt-β-catenin、醛脱氢酶活性、内在铂类耐药和肿瘤球形成的干细胞表型与卵巢癌新的侵袭性小鼠模型中 、 和 (KMF)基因的自发获得相关。黏附非依赖性 FAK 信号维持 KMF 和人肿瘤球的增殖以及对顺铂细胞毒性的耐药性。铂类耐药性肿瘤球可以获得对 FAK 生长的依赖性。因此,在接受新辅助化疗的 HGSOC 患者肿瘤中观察到 FAK 酪氨酸磷酸化增加。FAK 抑制剂与铂类联合克服化疗耐药并引发细胞凋亡。跨敲除和重建细胞的 FAK 转录组分析确定了 135 个靶标,这些靶标在 HGSOC 中上调,受 FAK 活性和 β-catenin 调节,包括 Myc、多能性和 DNA 修复基因。这些研究揭示了支持化疗耐药的致癌 FAK 信号转导作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/b2ec6d4ed14e/elife-47327-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/87a4dd97a8cf/elife-47327-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/ee141f5dab7e/elife-47327-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/2732a71fbe01/elife-47327-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/10c6188bc6ff/elife-47327-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/4844fba7231e/elife-47327-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/68084ec41caf/elife-47327-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/b6bc7b12d768/elife-47327-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/3f841faa3960/elife-47327-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/a0fb475cf700/elife-47327-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/20063cdc7e1a/elife-47327-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/f653e7354d73/elife-47327-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/aefeefacc55c/elife-47327-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/4283dc41ce5d/elife-47327-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/1300b0732b6e/elife-47327-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/7c95536031b9/elife-47327-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/42993a8c5ab8/elife-47327-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/7603015a5f45/elife-47327-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/83fceab82b68/elife-47327-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/6449520ca598/elife-47327-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/b2ec6d4ed14e/elife-47327-fig8-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/87a4dd97a8cf/elife-47327-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/ee141f5dab7e/elife-47327-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/2732a71fbe01/elife-47327-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/10c6188bc6ff/elife-47327-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/4844fba7231e/elife-47327-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/68084ec41caf/elife-47327-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/b6bc7b12d768/elife-47327-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/3f841faa3960/elife-47327-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/a0fb475cf700/elife-47327-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/20063cdc7e1a/elife-47327-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/f653e7354d73/elife-47327-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/aefeefacc55c/elife-47327-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/4283dc41ce5d/elife-47327-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/1300b0732b6e/elife-47327-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/7c95536031b9/elife-47327-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/42993a8c5ab8/elife-47327-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/7603015a5f45/elife-47327-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/83fceab82b68/elife-47327-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/6449520ca598/elife-47327-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fcf/6721800/b2ec6d4ed14e/elife-47327-fig8-figsupp1.jpg

相似文献

[1]
FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy.

Elife. 2019-9-3

[2]
Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance.

Oncotarget. 2015-9-15

[3]
Exploiting mechanoregulation via FAK/YAP to overcome platinum resistance in ovarian cancer.

Biomed Pharmacother. 2024-10

[4]
Focal Adhesion Kinase in Ovarian Cancer: A Potential Therapeutic Target for Platinum and Taxane-Resistant Tumors.

Curr Cancer Drug Targets. 2019

[5]
Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis.

Proc Natl Acad Sci U S A. 2022-4-26

[6]
Checkpoint kinase 2 (Chk2) supports sensitivity to platinum-based treatment in high grade serous ovarian cancer.

Gynecol Oncol. 2014-3-20

[7]
miRomics and Proteomics Reveal a miR-296-3p/PRKCA/FAK/Ras/c-Myc Feedback Loop Modulated by HDGF/DDX5/β-catenin Complex in Lung Adenocarcinoma.

Clin Cancer Res. 2017-7-27

[8]
The miR-181a-SFRP4 Axis Regulates Wnt Activation to Drive Stemness and Platinum Resistance in Ovarian Cancer.

Cancer Res. 2021-4-15

[9]
Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions.

Drug Resist Updat. 2015-11-26

[10]
FAK Inhibition disrupts a β5 integrin signaling axis controlling anchorage-independent ovarian carcinoma growth.

Mol Cancer Ther. 2014-8

引用本文的文献

[1]
Focal adhesion kinase promotes ribosome biogenesis to drive advanced thyroid cancer cell growth and survival.

Front Oncol. 2025-5-19

[2]
Unveiling drug resistance pathways in high-grade serous ovarian cancer(HGSOC): recent advances and future perspectives.

Front Immunol. 2025-4-30

[3]
Inducible FAK loss but not FAK inhibition in endothelial cells of PYK2-null mice activates p53 tumor suppressor to prevent tumor growth.

Mol Biol Cell. 2025-6-1

[4]
Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances.

Signal Transduct Target Ther. 2025-4-4

[5]
Transforming Cancer Therapy: Unlocking the Potential of Targeting Vascular and Stromal Cells in the Tumor Microenvironment.

Cancer Res. 2025-4-2

[6]
Emerging strategies and translational advancements of DDR1 in oncology.

Discov Oncol. 2025-3-30

[7]
Dual delivery of metformin and Y15 from a PLGA scaffold for the treatment of platinum-resistant ovarian cancer.

Future Med Chem. 2025-2

[8]
Unveiling novel biomarkers for platinum chemoresistance in ovarian cancer.

Open Med (Wars). 2025-1-13

[9]
Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition.

J Hematol Oncol. 2025-1-13

[10]
Stabilization of SQLE mRNA by WTAP/FTO/IGF2BP3-dependent manner in HGSOC: implications for metabolism, stemness, and progression.

Cell Death Dis. 2024-12-1

本文引用的文献

[1]
Rgnef promotes ovarian tumor progression and confers protection from oxidative stress.

Oncogene. 2019-7-15

[2]
Focal Adhesion Kinase and β-Catenin Cooperate to Induce Hepatocellular Carcinoma.

Hepatology. 2019-6-22

[3]
PTK2 promotes cancer stem cell traits in hepatocellular carcinoma by activating Wnt/β-catenin signaling.

Cancer Lett. 2019-3-5

[4]
Mutational landscape of primary, metastatic, and recurrent ovarian cancer reveals c-MYC gains as potential target for BET inhibitors.

Proc Natl Acad Sci U S A. 2018-12-24

[5]
The PRIDE database and related tools and resources in 2019: improving support for quantification data.

Nucleic Acids Res. 2019-1-8

[6]
Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.

Cell. 2018-4-5

[7]
Oncogenic Signaling Pathways in The Cancer Genome Atlas.

Cell. 2018-4-5

[8]
The composition of prostate core matrisome in vivo and in vitro unveiled by mass spectrometric analysis.

Prostate. 2018-6

[9]
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.

Oncogenesis. 2018-2-23

[10]
Effect of FAK inhibitor VS-6063 (defactinib) on docetaxel efficacy in prostate cancer.

Prostate. 2018-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索