Suppr超能文献

可逆网络的决策解释与特征重要性

Decision Explanation and Feature Importance for Invertible Networks.

作者信息

Zhuang Juntang, Dvornek Nicha C, Li Xiaoxiao, Yang Junlin, Duncan James S

机构信息

Biomedical Engineering, Yale University, New Haven, CT USA.

Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT USA.

出版信息

IEEE Int Conf Comput Vis Workshops. 2019 Oct;2019:4235-4239. doi: 10.1109/iccvw.2019.00521. Epub 2020 Mar 5.

Abstract

Deep neural networks are vulnerable to adversarial attacks and hard to interpret because of their black-box nature. The recently proposed invertible network is able to accurately reconstruct the inputs to a layer from its outputs, thus has the potential to unravel the black-box model. An invertible network classifier can be viewed as a two-stage model: (1) invertible transformation from input space to the feature space; (2) a linear classifier in the feature space. We can determine the decision boundary of a linear classifier in the feature space; since the transform is invertible, we can invert the decision boundary from the feature space to the input space. Furthermore, we propose to determine the projection of a data point onto the decision boundary, and define explanation as the difference between data and its projection. Finally, we propose to locally approximate a neural network with its first-order Taylor expansion, and define feature importance using a local linear model. We provide the implementation of our method: https://github.com/juntang-zhuang/explain_invertible.

摘要

深度神经网络容易受到对抗性攻击,并且由于其黑箱性质而难以解释。最近提出的可逆网络能够根据一层的输出准确地重构其输入,因此有潜力解开黑箱模型。一个可逆网络分类器可以被看作是一个两阶段模型:(1) 从输入空间到特征空间的可逆变换;(2) 特征空间中的线性分类器。我们可以确定特征空间中线性分类器的决策边界;由于变换是可逆的,我们可以将决策边界从特征空间反推到输入空间。此外,我们建议确定一个数据点在决策边界上的投影,并将解释定义为数据与其投影之间的差异。最后,我们建议用其一阶泰勒展开式对神经网络进行局部近似,并使用局部线性模型定义特征重要性。我们提供了我们方法的实现:https://github.com/juntang-zhuang/explain_invertible

相似文献

1
Decision Explanation and Feature Importance for Invertible Networks.可逆网络的决策解释与特征重要性
IEEE Int Conf Comput Vis Workshops. 2019 Oct;2019:4235-4239. doi: 10.1109/iccvw.2019.00521. Epub 2020 Mar 5.
2
Invertible Network for Classification and Biomarker Selection for ASD.用于自闭症谱系障碍分类和生物标志物选择的可逆网络。
Med Image Comput Comput Assist Interv. 2019 Oct;11766:700-708. doi: 10.1007/978-3-030-32248-9_78. Epub 2019 Oct 10.
3
HOPE: High-Order Polynomial Expansion of Black-Box Neural Networks.HOPE:黑箱神经网络的高阶多项式展开
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):7924-7939. doi: 10.1109/TPAMI.2024.3399197. Epub 2024 Nov 6.
5
Mimic and Fool: A Task-Agnostic Adversarial Attack.模仿与愚弄:一种任务无关的对抗攻击
IEEE Trans Neural Netw Learn Syst. 2021 Apr;32(4):1801-1808. doi: 10.1109/TNNLS.2020.2984972. Epub 2021 Apr 2.
6
Evaluating the Visualization of What a Deep Neural Network Has Learned.评估深度神经网络所学内容的可视化效果。
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2660-2673. doi: 10.1109/TNNLS.2016.2599820.
8
Deeply Supervised Discriminative Learning for Adversarial Defense.用于对抗防御的深度监督判别学习
IEEE Trans Pattern Anal Mach Intell. 2021 Sep;43(9):3154-3166. doi: 10.1109/TPAMI.2020.2978474. Epub 2021 Aug 4.
9
Query-Efficient Black-Box Adversarial Attack With Customized Iteration and Sampling.基于定制迭代和采样的查询高效黑盒对抗攻击
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2226-2245. doi: 10.1109/TPAMI.2022.3169802. Epub 2023 Jan 6.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验