Chen Hongtian, Sun Wenxin, Zhang Weidong, Jiang Bin, Ding Steven X, Huang Biao
IEEE Trans Neural Netw Learn Syst. 2025 Jul;36(7):12758-12771. doi: 10.1109/TNNLS.2024.3449443.
The series includes two parts, articulating the two novel avenues of research on intelligent fault diagnosis (FD) for nonlinear feedback control systems. In Part I of the series, we design a novel FD paradigm by elaborating an invertible neural network (INN) for feedback control systems. With the aid of a left manifold, the core idea behind the INN-based FD scheme is as follows: 1) formulation of residual generator used for FD as a projection of system data onto the null space that has the same dimension as system outputs; 2) in a topological space, elaboration of a homeomorphism that delivers an invertible relationship between system outputs and residual signals when the system input is given; and 3) skillful introduction of both the master and slave objective functions to achieve system/parameter identification with information loseless property. Comparing with the existing FD approaches, the three superior strengths of the proposed FD scheme deserving mentation are as follows: 1) it specializes in nonlinear feedback control systems; 2) it can effectively avoid the overfitting problem when approximating or learning nonlinear system dynamics; and 3) control theory guides the whole design, ensuring the interpretability of the learning process. Finally, two studies on nonlinear systems demonstrate the feasibility of the invertible left manifold (ILM)-based FD strategy. Part I would contribute to the future development of machine learning (ML)-based system identification and explainable FD approaches, and also benefits the right manifold-based FD designs in Part II.
该系列包括两部分,阐述了非线性反馈控制系统智能故障诊断(FD)研究的两条新途径。在该系列的第一部分中,我们通过为反馈控制系统精心设计一个可逆神经网络(INN)来设计一种新颖的FD范式。借助左流形,基于INN的FD方案背后的核心思想如下:1)将用于FD的残差生成器表述为系统数据在与系统输出具有相同维度的零空间上的投影;2)在拓扑空间中,精心设计一个同胚映射,当给定系统输入时,该映射在系统输出和残差信号之间建立可逆关系;3)巧妙引入主目标函数和从目标函数,以实现具有信息无损特性的系统/参数识别。与现有的FD方法相比,所提出的FD方案值得提及的三个优势如下:1)它专门针对非线性反馈控制系统;2)在逼近或学习非线性系统动态时,它可以有效避免过拟合问题;3)控制理论指导整个设计,确保学习过程的可解释性。最后,对非线性系统的两项研究证明了基于可逆左流形(ILM)的FD策略的可行性。第一部分将有助于基于机器学习(ML)的系统识别和可解释FD方法的未来发展,也有利于第二部分中基于右流形的FD设计。