Suppr超能文献

采用新型机器学习方法监测重症监护中的发作和高度癫痫样模式负担。

Monitoring the Burden of Seizures and Highly Epileptiform Patterns in Critical Care with a Novel Machine Learning Method.

机构信息

Ceribell Inc., 2483 Old Middlefield Way, Suite 120, Mountain View, CA, USA.

Department of Neurology, The Mount Sinai Hospital, New York, NY, USA.

出版信息

Neurocrit Care. 2021 Jun;34(3):908-917. doi: 10.1007/s12028-020-01120-0. Epub 2020 Oct 6.

Abstract

INTRODUCTION

Current electroencephalography (EEG) practice relies on interpretation by expert neurologists, which introduces diagnostic and therapeutic delays that can impact patients' clinical outcomes. As EEG practice expands, these experts are becoming increasingly limited resources. A highly sensitive and specific automated seizure detection system would streamline practice and expedite appropriate management for patients with possible nonconvulsive seizures. We aimed to test the performance of a recently FDA-cleared machine learning method (Claritγ, Ceribell Inc.) that measures the burden of seizure activity in real time and generates bedside alerts for possible status epilepticus (SE).

METHODS

We retrospectively identified adult patients (n = 353) who underwent evaluation of possible seizures with Rapid Response EEG system (Rapid-EEG, Ceribell Inc.). Automated detection of seizure activity and seizure burden throughout a recording (calculated as the percentage of ten-second epochs with seizure activity in any 5-min EEG segment) was performed with Claritγ, and various thresholds of seizure burden were tested (≥ 10% indicating ≥ 30 s of seizure activity in the last 5 min, ≥ 50% indicating ≥ 2.5 min of seizure activity, and ≥ 90% indicating ≥ 4.5 min of seizure activity and triggering a SE alert). The sensitivity and specificity of Claritγ's real-time seizure burden measurements and SE alerts were compared to the majority consensus of at least two expert neurologists.

RESULTS

Majority consensus of neurologists labeled the 353 EEGs as normal or slow activity (n = 249), highly epileptiform patterns (HEP, n = 87), or seizures [n = 17, nine longer than 5 min (e.g., SE), and eight shorter than 5 min]. The algorithm generated a SE alert (≥ 90% seizure burden) with 100% sensitivity and 93% specificity. The sensitivity and specificity of various thresholds for seizure burden during EEG recordings for detecting patients with seizures were 100% and 82% for ≥ 50% seizure burden and 88% and 60% for ≥ 10% seizure burden. Of the 179 EEG recordings in which the algorithm detected no seizures, seizures were identified by the expert reviewers in only two cases, indicating a negative predictive value of 99%.

DISCUSSION

Claritγ detected SE events with high sensitivity and specificity, and it demonstrated a high negative predictive value for distinguishing nonepileptiform activity from seizure and highly epileptiform activity.

CONCLUSIONS

Ruling out seizures accurately in a large proportion of cases can help prevent unnecessary or aggressive over-treatment in critical care settings, where empiric treatment with antiseizure medications is currently prevalent. Claritγ's high sensitivity for SE and high negative predictive value for cases without epileptiform activity make it a useful tool for triaging treatment and the need for urgent neurological consultation.

摘要

简介

目前的脑电图(EEG)实践依赖于专家神经科医生的解释,这会导致诊断和治疗的延迟,从而影响患者的临床结果。随着 EEG 实践的扩展,这些专家正成为越来越有限的资源。一个高度敏感和特异的自动癫痫发作检测系统将简化实践,并为可能出现非惊厥性癫痫发作的患者加速适当的管理。我们旨在测试最近获得 FDA 批准的机器学习方法(Claritγ,Ceribell Inc.)的性能,该方法实时测量癫痫发作活动负担,并为可能的癫痫持续状态(SE)生成床边警报。

方法

我们回顾性地确定了接受快速反应脑电图系统(Rapid-EEG,Ceribell Inc.)评估可能癫痫发作的成年患者(n=353)。Claritγ 对整个记录中的癫痫发作活动和癫痫发作负担(计算为在任何 5 分钟 EEG 段中具有癫痫发作活动的十秒段的百分比)进行自动检测,并测试了各种癫痫发作负担阈值(≥10%表示过去 5 分钟内有≥30 秒的癫痫发作活动,≥50%表示有≥2.5 分钟的癫痫发作活动,≥90%表示有≥4.5 分钟的癫痫发作活动并触发 SE 警报)。Claritγ 的实时癫痫发作负担测量和 SE 警报的敏感性和特异性与至少两名专家神经科医生的多数共识进行了比较。

结果

神经科医生的多数共识将 353 个 EEG 标记为正常或慢活动(n=249)、高度癫痫样模式(HEP,n=87)或癫痫发作[n=17,9 次发作持续时间超过 5 分钟(例如 SE),8 次发作持续时间短于 5 分钟]。该算法以 100%的敏感性和 93%的特异性生成 SE 警报(≥90%的癫痫发作负担)。在 EEG 记录期间用于检测癫痫发作患者的各种癫痫发作负担阈值的敏感性和特异性为 100%和 82%,用于≥50%的癫痫发作负担,88%和 60%,用于≥10%的癫痫发作负担。在 179 个未检测到癫痫发作的 EEG 记录中,只有两名专家审查员发现了癫痫发作,表明阴性预测值为 99%。

讨论

Claritγ 对 SE 事件的检测具有高度的敏感性和特异性,并且对区分非癫痫发作活动与癫痫发作和高度癫痫样活动具有高阴性预测值。

结论

在很大比例的病例中准确排除癫痫发作可以帮助防止在目前普遍存在经验性抗癫痫药物治疗的重症监护环境中不必要或过度治疗。Claritγ 对 SE 的高敏感性和对无癫痫样活动病例的高阴性预测值使其成为治疗和紧急神经咨询需求分类的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09a8/8179898/d64df7f7f54f/12028_2020_1120_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验