Suppr超能文献

通过声音检测无症状性癫痫发作。

Detecting silent seizures by their sound.

机构信息

Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, USA.

Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Epilepsia. 2018 Apr;59(4):877-884. doi: 10.1111/epi.14043. Epub 2018 Mar 20.

Abstract

OBJECTIVE

The traditional approach to interpreting electroencephalograms (EEGs) requires physicians with formal training to visually assess the waveforms. This approach can be less practical in critical settings where a trained EEG specialist is not readily available to review the EEG and diagnose ongoing subclinical seizures, such as nonconvulsive status epilepticus.

METHODS

We have developed a novel method by which EEG data are converted to sound in real time by letting the underlying electrophysiological signal modulate a voice tone that is in the audible range. Here, we explored whether individuals without any prior EEG training could listen to 15-second sonified EEG and determine whether the EEG represents seizures or nonseizure conditions. We selected 84 EEG samples to represent seizures (n = 7), seizure-like activity (n = 25), or nonperiodic, nonrhythmic activity (normal or focal/generalized slowing, n = 52). EEGs from single channels in the left and right hemispheres were then converted to sound files. After a 4-minute training video, medical students (n = 34) and nurses (n = 30) were asked to designate each audio sample as "seizure" or "nonseizure." We then compared their performance with that of EEG-trained neurologists (n = 12) and medical students (n = 29) who also diagnosed the same EEGs on visual display.

RESULTS

Nonexperts listening to single-channel sonified EEGs detected seizures with remarkable sensitivity (students, 98% ± 5%; nurses, 95% ± 14%) compared to experts or nonexperts reviewing the same EEGs on visual display (neurologists, 88% ± 11%; students, 76% ± 19%). If the EEGs contained seizures or seizure-like activity, nonexperts listening to sonified EEGs rated them as seizures with high specificity (students, 85% ± 9%; nurses, 82% ± 12%) compared to experts or nonexperts viewing the EEGs visually (neurologists, 90% ± 7%; students, 65% ± 20%).

SIGNIFICANCE

Our study confirms that individuals without EEG training can detect ongoing seizures or seizure-like rhythmic periodic patterns by listening to sonified EEG. Although sonification of EEG cannot replace the traditional approaches to EEG interpretation, it provides a meaningful triage tool for fast assessment of patients with suspected subclinical seizures.

摘要

目的

传统的脑电图(EEG)解读方法需要接受过正规培训的医生通过视觉评估波形。在一些关键环境中,例如没有受过训练的 EEG 专家来审查 EEG 并诊断持续的亚临床发作(如非惊厥性癫痫持续状态),这种方法可能不太实用。

方法

我们开发了一种新方法,可以通过让潜在的电生理信号调制在可听范围内的音调,实时将 EEG 数据转换为声音。在这里,我们探讨了是否没有任何 EEG 培训的个体可以听 15 秒的声音化 EEG,并确定 EEG 是否代表发作或非发作状态。我们选择了 84 个 EEG 样本来代表发作(n = 7)、发作样活动(n = 25)或非周期性、非节律性活动(正常或局灶/全面性减慢,n = 52)。然后将左右半球的单个通道 EEG 转换为声音文件。在观看 4 分钟的培训视频后,让医学生(n = 34)和护士(n = 30)将每个音频样本标记为“发作”或“非发作”。然后,我们将他们的表现与接受过 EEG 培训的神经科医生(n = 12)和医学生(n = 29)进行比较,这些医生和医学生也在视觉显示上诊断了相同的 EEG。

结果

与专家或非专家在视觉显示上查看相同的 EEG 相比,不熟悉单通道声音化 EEG 的专家对发作的检测具有很高的敏感性(学生为 98% ± 5%;护士为 95% ± 14%)。如果 EEG 包含发作或发作样活动,不熟悉声音化 EEG 的个体将其标记为发作的特异性很高(学生为 85% ± 9%;护士为 82% ± 12%)与专家或非专家在视觉上查看 EEG 相比(神经科医生为 90% ± 7%;学生为 65% ± 20%)。

意义

我们的研究证实,没有 EEG 培训的个体可以通过听声音化 EEG 来检测持续的发作或发作样节律性周期性模式。尽管 EEG 的声音化不能替代 EEG 解释的传统方法,但它为快速评估疑似亚临床发作的患者提供了有意义的分诊工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验