Suppr超能文献

具有松弛汉明距离的协调共享自动编码器高斯过程潜变量模型

Harmonization Shared Autoencoder Gaussian Process Latent Variable Model With Relaxed Hamming Distance.

作者信息

Li Jinxing, Zhang Bob, Lu Guangming, Xu Yong, Wu Feng, Zhang David

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):5093-5107. doi: 10.1109/TNNLS.2020.3026876. Epub 2021 Oct 27.

Abstract

Multiview learning has shown its superiority in visual classification compared with the single-view-based methods. Especially, due to the powerful representation capacity, the Gaussian process latent variable model (GPLVM)-based multiview approaches have achieved outstanding performances. However, most of them only follow the assumption that the shared latent variables can be generated from or projected to the multiple observations but fail to exploit the harmonization in the back constraint and adaptively learn a classifier according to these learned variables, which would result in performance degradation. To tackle these two issues, in this article, we propose a novel harmonization shared autoencoder GPLVM with a relaxed Hamming distance (HSAGP-RHD). Particularly, an autoencoder structure with the Gaussian process (GP) prior is first constructed to learn the shared latent variable for multiple views. To enforce the agreement among various views in the encoder, a harmonization constraint is embedded into the model by making consistency for the view-specific similarity. Furthermore, we also propose a novel discriminative prior, which is directly imposed on the latent variable to simultaneously learn the fused features and adaptive classifier in a unit model. In detail, the centroid matrix corresponding to the centroids of different categories is first obtained. A relaxed Hamming distance (RHD)-based measurement is subsequently presented to measure the similarity and dissimilarity between the latent variable and centroids, not only allowing us to get the closed-form solutions but also encouraging the points belonging to the same class to be close, while those belonging to different classes to be far. Due to this novel prior, the category of the out-of-sample is also allowed to be simply assigned in the testing phase. Experimental results conducted on three real-world data sets demonstrate the effectiveness of the proposed method compared with state-of-the-art approaches.

摘要

与基于单视图的方法相比,多视图学习在视觉分类中已显示出其优越性。特别是,由于强大的表示能力,基于高斯过程潜变量模型(GPLVM)的多视图方法取得了出色的性能。然而,它们中的大多数仅遵循共享潜变量可以从多个观测值生成或投影到多个观测值的假设,但未能利用反向约束中的协调性并根据这些学习到的变量自适应地学习分类器,这将导致性能下降。为了解决这两个问题,在本文中,我们提出了一种具有松弛汉明距离的新型协调共享自动编码器GPLVM(HSAGP-RHD)。具体而言,首先构建一个具有高斯过程(GP)先验的自动编码器结构,以学习多个视图的共享潜变量。为了在编码器中强制不同视图之间的一致性,通过使特定视图的相似性保持一致,将协调约束嵌入到模型中。此外,我们还提出了一种新颖的判别先验,它直接施加在潜变量上,以便在单元模型中同时学习融合特征和自适应分类器。详细地说,首先获得对应于不同类别的质心的质心矩阵。随后提出基于松弛汉明距离(RHD)的度量,以测量潜变量与质心之间的相似性和不相似性,这不仅使我们能够得到闭式解,而且鼓励属于同一类别的点靠近,而属于不同类别的点远离。由于这种新颖的先验,在测试阶段也可以简单地分配样本外数据的类别。在三个真实世界数据集上进行的实验结果表明,与现有方法相比,所提出的方法是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验