IEEE Trans Image Process. 2017 Sep;26(9):4168-4181. doi: 10.1109/TIP.2017.2713045. Epub 2017 Jun 7.
Data from real applications involve multiple modalities representing content with the same semantics from complementary aspects. However, relations among heterogeneous modalities are simply treated as observation-to-fit by existing work, and the parameterized modality specific mapping functions lack flexibility in directly adapting to the content divergence and semantic complicacy in multimodal data. In this paper, we build our work based on the Gaussian process latent variable model (GPLVM) to learn the non-parametric mapping functions and transform heterogeneous modalities into a shared latent space. We propose multimodal Similarity Gaussian Process latent variable model (m-SimGP), which learns the mapping functions between the intra-modal similarities and latent representation. We further propose multimodal distance-preserved similarity GPLVM (m-DSimGP) to preserve the intra-modal global similarity structure, and multimodal regularized similarity GPLVM (m-RSimGP) by encouraging similar/dissimilar points to be similar/dissimilar in the latent space. We propose m-DRSimGP, which combines the distance preservation in m-DSimGP and semantic preservation in m-RSimGP to learn the latent representation. The overall objective functions of the four models are solved by simple and scalable gradient decent techniques. They can be applied to various tasks to discover the nonlinear correlations and to obtain the comparable low-dimensional representation for heterogeneous modalities. On five widely used real-world data sets, our approaches outperform existing models on cross-modal content retrieval and multimodal classification.
来自实际应用的数据涉及多个模态,这些模态从互补的方面表示具有相同语义的内容。然而,现有工作简单地将异类模态之间的关系视为观测到的拟合关系,并且参数化的模态特定映射函数在直接适应多模态数据中的内容差异和语义复杂性方面缺乏灵活性。在本文中,我们基于高斯过程潜在变量模型 (GPLVM) 构建我们的工作,以学习非参数映射函数并将异类模态转换为共享潜在空间。我们提出了多模态相似性高斯过程潜在变量模型 (m-SimGP),它学习模态内相似度和潜在表示之间的映射函数。我们进一步提出了多模态距离保持相似性 GPLVM (m-DSimGP) 以保持模态内全局相似性结构,以及通过鼓励相似/不相似点在潜在空间中相似/不相似来鼓励相似/不相似点的多模态正则化相似性 GPLVM (m-RSimGP)。我们提出了 m-DRSimGP,它结合了 m-DSimGP 中的距离保持和 m-RSimGP 中的语义保持,以学习潜在表示。这四个模型的总体目标函数通过简单且可扩展的梯度下降技术来求解。它们可以应用于各种任务,以发现非线性相关性,并获得异类模态的可比低维表示。在五个广泛使用的真实世界数据集上,我们的方法在跨模态内容检索和多模态分类方面优于现有模型。