Suppr超能文献

用于视觉分类的共享自动编码器高斯过程潜在变量模型

Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification.

作者信息

Li Jinxing, Zhang Bob, Zhang David

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4272-4286. doi: 10.1109/TNNLS.2017.2761401. Epub 2017 Oct 31.

Abstract

Multiview learning reveals the latent correlation among different modalities and utilizes the complementary information to achieve a better performance in many applications. In this paper, we propose a novel multiview learning model based on the Gaussian process latent variable model (GPLVM) to learn a set of nonlinear and nonparametric mapping functions and obtain a shared latent variable in the manifold space. Different from the previous work on the GPLVM, the proposed shared autoencoder Gaussian process (SAGP) latent variable model assumes that there is an additional mapping from the observed data to the shared manifold space. Due to the introduction of the autoencoder framework, both nonlinear projections from and to the observation are considered simultaneously. Additionally, instead of fully connecting used in the conventional autoencoder, the SAGP achieves the mappings utilizing the GP, which remarkably reduces the number of estimated parameters and avoids the phenomenon of overfitting. To make the proposed method adaptive for classification, a discriminative regularization is embedded into the proposed method. In the optimization process, an efficient algorithm based on the alternating direction method and gradient decent techniques is designed to solve the encoder and decoder parts alternatively. Experimental results on three real-world data sets substantiate the effectiveness and superiority of the proposed approach as compared with the state of the art.

摘要

多视图学习揭示了不同模态之间的潜在相关性,并利用互补信息在许多应用中实现更好的性能。在本文中,我们提出了一种基于高斯过程潜变量模型(GPLVM)的新型多视图学习模型,以学习一组非线性和非参数映射函数,并在流形空间中获得一个共享潜变量。与先前关于GPLVM的工作不同,所提出的共享自动编码器高斯过程(SAGP)潜变量模型假设存在从观测数据到共享流形空间的额外映射。由于引入了自动编码器框架,同时考虑了从观测数据到共享流形空间以及从共享流形空间到观测数据的非线性投影。此外,SAGP不是使用传统自动编码器中的全连接,而是利用高斯过程实现映射,这显著减少了估计参数的数量并避免了过拟合现象。为了使所提出的方法适用于分类,将判别正则化嵌入到该方法中。在优化过程中,设计了一种基于交替方向法和梯度下降技术的高效算法来交替求解编码器和解码器部分。在三个真实世界数据集上的实验结果证实了所提出方法与现有技术相比的有效性和优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验