Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut.
J Biol Rhythms. 2020 Dec;35(6):576-587. doi: 10.1177/0748730420961214. Epub 2020 Oct 8.
To be physiologically relevant, the period of the central circadian pacemaker, located in the suprachiasmatic nucleus (SCN), has to match the solar day in a process known as circadian photoentrainment. However, little is known about the spatiotemporal molecular changes that occur in the SCN in response to light. In this study, we sought to systematically characterize the circadian and light effects on activity-dependent markers of transcriptional (cFos), translational (pS6), and epigenetic (pH3) activities in the mouse SCN. To investigate circadian versus light influences on these molecular responses, we harvested brains from adult wild-type mice in darkness at different circadian times (CT) or from mice exposed to a 15-min light pulse at the middle of the subjective day (CT6, no phase shifts), early subjective night (CT14, large phase delays), or late subjective night (CT22, small phase advances). We found that cFos and pS6 exhibited rhythmic circadian expression in the SCN with distinct spatial rhythms, whereas pH3 expression was undetectable at all circadian phases. cFos rhythms were largely limited to the SCN shell, whereas pS6 rhythms encompassed the entire SCN. pH3, pS6, and cFos showed gating in response to light; however, we were surprised to find that the expression levels of these markers were not higher at phases when larger phase shifts are observed behaviorally (CT14 versus CT22). We then used animals lacking melanopsin (melanopsin knockout [MKO]), which show deficits in phase delays, to further investigate whether changes in these molecular markers correspond to behavioral phase shifts. Surprisingly, only pS6 showed deficits in MKOs at CT14. Therefore, our previous understanding of the molecular pathways that lead to circadian photoentrainment needs to be revised.
为了具有生理学相关性,位于视交叉上核(SCN)中的中央生物钟节律必须与太阳日相匹配,这个过程被称为生物钟光驯化。然而,对于光刺激下 SCN 中发生的时空分子变化,我们知之甚少。在这项研究中,我们试图系统地描述生物钟和光照对 SCN 中转录(cFos)、翻译(pS6)和表观遗传(pH3)活性的活性依赖性标记物的节律和光效应。为了研究这些分子反应的生物钟与光照影响,我们在不同的生物钟时间(CT)下从成年野生型小鼠的黑暗中或在主观日的中间(CT6,无相位延迟)、早期主观夜(CT14,大相位延迟)或晚期主观夜(CT22,小相位提前)暴露于 15 分钟光脉冲的小鼠中采集 SCN 大脑。我们发现 cFos 和 pS6 在 SCN 中表现出节律性的生物钟表达,具有独特的空间节律,而 pH3 表达在所有生物钟相位下均无法检测到。cFos 节律主要局限于 SCN 壳,而 pS6 节律涵盖整个 SCN。pH3、pS6 和 cFos 对光照表现出门控反应;然而,令我们惊讶的是,我们发现这些标记物的表达水平在行为上观察到更大的相位延迟时(CT14 与 CT22)并不更高。然后,我们使用缺乏黑视蛋白(melanopsin knockout [MKO])的动物进一步研究这些分子标记物的变化是否与行为相位延迟相对应,这些动物表现出相位延迟缺陷。令人惊讶的是,只有 pS6 在 CT14 时在 MKO 中表现出缺陷。因此,我们之前对导致生物钟光驯化的分子途径的理解需要修正。