Department of Psychiatry, University of California-San Diego, La Jolla, CA 92093, USA.
Annu Rev Physiol. 2010;72:551-77. doi: 10.1146/annurev-physiol-021909-135919.
The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.
视交叉上核(SCN)是哺乳动物的主要生物钟起搏器。分散培养的单个 SCN 神经元可以产生时钟基因表达和神经元放电的独立生物钟振荡。然而,SCN 的节律性取决于足够的膜去极化和细胞内钙和 cAMP 的水平。在完整的 SCN 中,细胞振荡通过来自其他细胞的节律性突触输入被同步和加强,从而产生由 SCN 电路组织指定的可重复的地形模式,具有不同的相位和幅度。SCN 网络使组成细胞振荡器同步,加强它们的振荡,通过改变它们的相位分布来响应光输入,增加它们对遗传扰动的鲁棒性,并提高它们的精度。因此,尽管单个 SCN 神经元可以是自主的生物钟振荡器,但神经元网络特性是 SCN 正常功能的组成部分。