IEEE Trans Vis Comput Graph. 2021 Feb;27(2):978-988. doi: 10.1109/TVCG.2020.3029412. Epub 2021 Jan 28.
Understanding correlation judgement is important to designing effective visualizations of bivariate data. Prior work on correlation perception has not considered how factors including prior beliefs and uncertainty representation impact such judgements. The present work focuses on the impact of uncertainty communication when judging bivariate visualizations. Specifically, we model how users update their beliefs about variable relationships after seeing a scatterplot with and without uncertainty representation. To model and evaluate the belief updating, we present three studies. Study 1 focuses on a proposed "Line + Cone" visual elicitation method for capturing users' beliefs in an accurate and intuitive fashion. The findings reveal that our proposed method of belief solicitation reduces complexity and accurately captures the users' uncertainty about a range of bivariate relationships. Study 2 leverages the "Line + Cone" elicitation method to measure belief updating on the relationship between different sets of variables when seeing correlation visualization with and without uncertainty representation. We compare changes in users beliefs to the predictions of Bayesian cognitive models which provide normative benchmarks for how users should update their prior beliefs about a relationship in light of observed data. The findings from Study 2 revealed that one of the visualization conditions with uncertainty communication led to users being slightly more confident about their judgement compared to visualization without uncertainty information. Study 3 builds on findings from Study 2 and explores differences in belief update when the bivariate visualization is congruent or incongruent with users' prior belief. Our results highlight the effects of incorporating uncertainty representation, and the potential of measuring belief updating on correlation judgement with Bayesian cognitive models.
理解相关判断对于设计有效的二元数据可视化非常重要。先前关于相关感知的研究尚未考虑到包括先验信念和不确定性表示在内的因素如何影响此类判断。本工作重点研究判断二元可视化时不确定性传达的影响。具体来说,我们研究了在看到有和没有不确定性表示的散点图后,用户如何更新他们对变量关系的信念。为了对信念更新进行建模和评估,我们进行了三项研究。研究 1 专注于提出的“线+锥”视觉启发方法,以准确直观地捕捉用户的信念。研究结果表明,我们提出的信念征求方法减少了复杂性,并准确地捕捉了用户对一系列二元关系的不确定性。研究 2 利用“线+锥”启发方法来衡量在看到有和没有不确定性表示的相关可视化时,不同变量集之间关系的信念更新。我们将用户信念的变化与贝叶斯认知模型的预测进行比较,这些模型为用户根据观察到的数据更新他们对关系的先验信念提供了规范基准。研究 2 的结果表明,与没有不确定性信息的可视化相比,具有不确定性传达的一种可视化条件导致用户对其判断更有信心。研究 3 基于研究 2 的发现,探索了当二元可视化与用户的先验信念一致或不一致时,信念更新的差异。我们的结果强调了纳入不确定性表示的效果,以及使用贝叶斯认知模型测量相关判断的信念更新的潜力。