Suppr超能文献

基于配体的 TNF-α 药效团模型设计新型抑制剂的虚拟筛选和分子动力学研究。

Ligand-based pharmacophore modeling of TNF-α to design novel inhibitors using virtual screening and molecular dynamics.

机构信息

Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

出版信息

J Biomol Struct Dyn. 2022 Mar;40(4):1702-1718. doi: 10.1080/07391102.2020.1831962. Epub 2020 Oct 9.

Abstract

Tumor necrosis factor-α (TNF-α) is one of the promising targets for treating inflammatory (Crohn disease, psoriasis, psoriatic arthritis, rheumatoid arthritis) and various other diseases. Commercially available TNF-α inhibitors are associated with several risks and limitations. In the present study, we have identified small TNF-α inhibitors using approaches, namely pharmacophore modeling, virtual screening, molecular docking, molecular dynamics simulation and free binding energy calculations. The study yielded better and potent hits that bind to TNF-α with significant affinity. The best pharmacophore model generated using LigandScout has an efficient hit rate and Area Under the operating Curve. High throughput virtual screening of SPECS database molecules against crystal structure of TNF-α protein, coupled with physicochemical filtration, PAINS test. Virtual hit compounds used for molecular docking enabled the identification of 20 compounds with better binding energies when compared with previously known TNF-α inhibitors. MD simulation analysis on 20 virtual identified hits showed that ligand binding with TNF-α protein is stable and protein-ligand conformation remains unchanged. Further, 16 compounds passed ADMET analysis suggesting these identified hit compounds are suitable for designing a future class of potent TNF-α inhibitors.Communicated by Ramaswamy H. Sarma.

摘要

肿瘤坏死因子-α(TNF-α)是治疗炎症性疾病(克罗恩病、银屑病、银屑病关节炎、类风湿性关节炎)和各种其他疾病的有前途的靶点之一。市售的 TNF-α 抑制剂存在一些风险和局限性。在本研究中,我们使用了多种方法来鉴定小分子 TNF-α 抑制剂,包括药效团建模、虚拟筛选、分子对接、分子动力学模拟和自由结合能计算。研究得到了更好、更有效的与 TNF-α 具有显著亲和力的化合物。使用 LigandScout 生成的最佳药效团模型具有较高的命中率和工作曲线下面积。对 SPECS 数据库分子进行高通量虚拟筛选,针对 TNF-α 蛋白的晶体结构,结合物理化学过滤、PAINS 测试。将虚拟命中化合物用于分子对接,鉴定出 20 种与已知 TNF-α 抑制剂相比具有更好结合能的化合物。对 20 种虚拟鉴定出的化合物进行 MD 模拟分析表明,配体与 TNF-α 蛋白的结合是稳定的,蛋白-配体构象保持不变。此外,有 16 种化合物通过了 ADMET 分析,表明这些鉴定出的化合物适合设计未来一类有效的 TNF-α 抑制剂。由 Ramaswamy H. Sarma 交流。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验