Zhang Yi, Garrevoet Jan, Wang Yanhong, Roeh Jan Torben, Terrill Nicholas J, Falkenberg Gerald, Dong Yuhui, Gupta Himadri S
Institute of High Energy Physics, Chinese Academy of Science, 100049 Beijing, China.
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
ACS Nano. 2020 Dec 22;14(12):16535-16546. doi: 10.1021/acsnano.0c02879. Epub 2020 Oct 9.
Determining multiscale, concurrent strain, and deformation mechanisms in hierarchical biological materials is a crucial engineering goal, to understand structural optimization strategies in Nature. However, experimentally characterizing complex strain and displacement fields within a 3D hierarchical composite, in a multiscale full-field manner, is challenging. Here, we determined the in situ strains at the macro-, meso-, and molecular-levels in stomatopod cuticle simultaneously, by exploiting the anisotropy of the 3D fiber diffraction coupled with sample rotation. The results demonstrate the method, using the mineralized 3D α-chitin fiber networks as strain sensors, can capture submicrometer deformation of a single lamella (mesoscale), can extract strain information on multiple constituents concurrently, and shows that α-chitin fiber networks deform elastically while the surrounding matrix deforms plastically before systematic failure under compression. Further, the results demonstrate a molecular-level prestrain gradient in chitin fibers, resulting from different mineralization degrees in the exo- and endo cuticle.
确定分层生物材料中的多尺度、同时存在的应变和变形机制是一个关键的工程目标,以便了解自然界中的结构优化策略。然而,以多尺度全场方式对三维分层复合材料内的复杂应变和位移场进行实验表征具有挑战性。在这里,我们通过利用三维纤维衍射的各向异性并结合样品旋转,同时确定了口足类动物角质层在宏观、介观和分子水平上的原位应变。结果表明,该方法利用矿化的三维α-几丁质纤维网络作为应变传感器,能够捕捉单个薄片(介观尺度)的亚微米级变形,能够同时提取多种成分的应变信息,并表明在压缩下系统失效之前,α-几丁质纤维网络弹性变形而周围基质塑性变形。此外,结果表明几丁质纤维中存在分子水平的预应变梯度,这是由外角质层和内角质层不同的矿化程度导致的。