Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
Chem Commun (Camb). 2020 Nov 11;56(87):13301-13312. doi: 10.1039/d0cc05359g. Epub 2020 Oct 9.
Next-generation high-performance lithium-ion batteries (LIBs) with high energy and power density, long cycle life and uncompromising safety standards require new electrode materials beyond conventional intercalation compounds. However, these materials face a tradeoff between the high capacity and stable cycling because more Li stored in the materials also brings instability to the electrode. Stress-resilient electrode materials are the solution to balance this issue, where the decoupling of strong chemomechanical effects on battery cycling is a prerequisite. This review covers the (de)lithiation behaviors of the alloy and conversion-type anodes and their stress mitigation strategies. We highlight the reaction and degradation mechanisms down to the atomic scale revealed by in situ methods. We also discuss the implications of these mechanistic studies and comment on the effectiveness of the electrode structural and chemical designs that could potentially enable the commercialization of the next generation LIBs based on high-capacity anodes.
下一代高性能锂离子电池(LIB)需要具有高能量和功率密度、长循环寿命和不妥协的安全标准的新型电极材料,超越传统的嵌入化合物。然而,这些材料在高容量和稳定循环之间面临权衡,因为在材料中储存更多的 Li 也会给电极带来不稳定性。抗应力电极材料是解决这一问题的方法,其中电池循环过程中强化学机械效应的解耦是前提。本综述涵盖了合金和转化型阳极的(脱)锂行为及其应力缓解策略。我们强调了原位方法揭示的原子尺度的反应和降解机制。我们还讨论了这些机械研究的意义,并对电极结构和化学设计的有效性进行了评论,这些设计有可能使基于高容量阳极的下一代 LIB 实现商业化。