IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):1042-1049. doi: 10.1109/TCBB.2020.3029846. Epub 2022 Apr 1.
Gene regulatory networks (GRNs)are involved in various biological processes, such as cell cycle, differentiation and apoptosis. The existing large amount of expression data, especially the time-series expression data, provide a chance to infer GRNs by computational methods. These data can reveal the dynamics of gene expression and imply the regulatory relationships among genes. However, identify the indirect regulatory links is still a big challenge as most studies treat time points as independent observations, while ignoring the influences of time delays. In this study, we propose a GRN inference method based on information-theory measure, called NIMCE. NIMCE incorporates the transfer entropy to measure the regulatory links between each pair of genes, then applies the causation entropy to filter indirect relationships. In addition, NIMCE applies multi time delays to identify indirect regulatory relationships from candidate genes. Experiments on simulated and colorectal cancer data show NIMCE outperforms than other competing methods. All data and codes used in this study are publicly available at https://github.com/CSUBioGroup/NIMCE.
基因调控网络(GRNs)参与了各种生物学过程,如细胞周期、分化和凋亡。现有的大量表达数据,特别是时间序列表达数据,为通过计算方法推断 GRNs 提供了机会。这些数据可以揭示基因表达的动态,并暗示基因之间的调控关系。然而,识别间接调控关系仍然是一个巨大的挑战,因为大多数研究将时间点视为独立的观测值,而忽略了时间延迟的影响。在这项研究中,我们提出了一种基于信息论度量的 GRN 推断方法,称为 NIMCE。NIMCE 结合转移熵来测量每对基因之间的调控关系,然后应用因果熵来过滤间接关系。此外,NIMCE 应用多时间延迟从候选基因中识别间接调控关系。在模拟和结直肠癌数据上的实验表明,NIMCE 优于其他竞争方法。本研究中使用的所有数据和代码都可以在 https://github.com/CSUBioGroup/NIMCE 上公开获取。