Suppr超能文献

使用卷积神经网络在垃圾收集过程中检测消费者垃圾袋中的玻璃和金属。

Detecting glass and metal in consumer trash bags during waste collection using convolutional neural networks.

机构信息

Norwegian University of Science and Technology (NTNU), Department of Mechanical and Industrial Engineering, Richard Birkelands Veg 2B, 7491 Trondheim, Norway.

Norwegian University of Science and Technology (NTNU), Department of Mechanical and Industrial Engineering, Richard Birkelands Veg 2B, 7491 Trondheim, Norway.

出版信息

Waste Manag. 2021 Jan 1;119:30-38. doi: 10.1016/j.wasman.2020.09.032. Epub 2020 Oct 8.

Abstract

We present a proof-of-concept method to classify the presence of glass and metal in consumer trash bags. With the prevalent utilization of waste collection trucks in municipal solid waste management, the aim of this method is to help pinpoint the locations where waste sorting quality is below accepted standards, making it possible and more efficient to develop tailored procedures that can improve the waste sorting quality in areas with the most urgent needs. Using trash bags containing various amounts of glass and metal, in addition to common waste found in households, we use a combination of sound recording and a beat-frequency oscillation metal detector as inputs to a machine learning algorithm to identify the occurrence of glass and metal in trash bags. A custom-built test rig was developed to mimic a real waste collection truck, which was used to test different sensors and build the datasets. Convolutional neural networks were trained for the classification task, achieving accuracies of up to 98%. These promising results support this method's potential implementation in real waste collection trucks, enabling location-specific and long-term monitoring of consumer waste sorting quality, which can provide decision support for waste management systems, and research on consumer behavior.

摘要

我们提出了一种概念验证方法,用于对消费者垃圾袋中是否存在玻璃和金属进行分类。随着废物收集卡车在城市固体废物管理中的广泛应用,该方法旨在帮助确定废物分类质量低于标准的位置,以便更有可能且更有效地制定专门的程序,从而改善最急需的地区的废物分类质量。我们使用装有各种数量玻璃和金属的垃圾袋,以及家庭中常见的废物,将声音记录和拍频振荡金属探测器的组合作为机器学习算法的输入,以识别垃圾袋中是否存在玻璃和金属。我们开发了一个定制的测试平台来模拟真实的废物收集卡车,用于测试不同的传感器并构建数据集。我们对卷积神经网络进行了分类任务的训练,达到了高达 98%的准确率。这些有希望的结果支持了该方法在实际废物收集卡车中的潜在实施,能够对消费者废物分类质量进行特定位置和长期监测,为废物管理系统和消费者行为研究提供决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验