Department of Chemistry, Madras Christian College, University of Madras, East Tambaram, Chennai, Tamil Nadu, 600 059, India.
Environ Sci Pollut Res Int. 2021 Apr;28(15):18589-18603. doi: 10.1007/s11356-020-11153-9. Epub 2020 Oct 10.
To eradicate the aquatic pollution caused by dyes, trendily the global researchers provide dedication to dye degradation using nanostructured photocatalyst. This research work is dedicated to explore an advanced, facile, bio-compact green fabricated nanostructure for water refinement. In this regard, plant-mediated syntheses of pure CeO and Mn-decorated CeO nano-powders have been inspected using seed extract of Cassia angustifolia. Investigations through UV-diffuse reflectance spectroscopy explored the significantly tuned band gap of Mn:CeO. FT-IR spectroscopy shows the existing functional groups of high-potential phenolic compounds, proteins, and amino acids in Cassia angustifolia act as reducing and capping agents involved in the green fabricated nanostructured samples. X-ray diffraction pattern has been exposed to crystalline cubic fluorite morphology in a single phase and it leads to a regulated optimized amount of Mn on CeO nanostructure. The FESEM analysis predicts the morphology of CeO in spherical and Mn:CeO in flower-like structure. The HRTEM analysis has portrayed particle size of CeO is 11 nm and tuned Mn:CeO nanostructure is 9 nm. The HRTEM images revealed the average particle size in the range 10-12 nm in CeO and 8-9 nm in 5 mol% Mn:CeO nanoparticles. It showed a decrease in average particle size with an increase in Mn concentration and the reduction in size may be due to the replacement of Ce(IV) with Mn(II) ions. The elemental composition in nanostructure was predicted using energy-dispersive X-ray analysis. The rapid photocatalytic degradation efficiency of malachite green was effectually performed and compared with the kinetics model of Mn:CeO and pure CeO nanostructures. From the augmented results, tuned Mn:CeO was found to act as the finest green fabricated photocatalyst in the amputation of lethal and carcinogenic dye.
为了消除染料造成的水污染,全球研究人员致力于利用纳米结构光催化剂来降解染料。本研究致力于探索一种先进、简便、生物兼容的绿色制造纳米结构,用于水的净化。在这方面,使用狭叶番泻的种子提取物研究了纯 CeO 和 Mn 修饰的 CeO 纳米粉末的植物介导合成。通过紫外漫反射光谱研究发现,Mn:CeO 的带隙明显调谐。傅里叶变换红外光谱显示,狭叶番泻中存在高潜力酚类化合物、蛋白质和氨基酸的功能基团,它们作为还原剂和封端剂参与绿色制造的纳米结构样品。X 射线衍射图谱显示出单相的立方萤石形态的结晶,它导致 CeO 纳米结构中 Mn 的调控优化量。FESEM 分析预测 CeO 的形态为球形,Mn:CeO 的形态为花状。HRTEM 分析描绘了 CeO 的粒径为 11nm,调谐的 Mn:CeO 纳米结构为 9nm。HRTEM 图像显示 CeO 的平均粒径在 10-12nm 范围内,5mol%Mn:CeO 纳米粒子的平均粒径在 8-9nm 范围内。随着 Mn 浓度的增加,平均粒径减小,粒径减小可能是由于 Ce(IV)被 Mn(II)离子取代。使用能量色散 X 射线分析预测了纳米结构中的元素组成。孔雀石绿的快速光催化降解效率得到了有效评价,并与 Mn:CeO 和纯 CeO 纳米结构的动力学模型进行了比较。从增强的结果中发现,调谐的 Mn:CeO 作为最精细的绿色制造光催化剂,在切除致命和致癌染料方面表现出色。