Suppr超能文献

用于绘制加利福尼亚州圣华金谷伸展裂缝并约束岩石力学性质的沉降衍生体积应变模型

Subsidence-Derived Volumetric Strain Models for Mapping Extensional Fissures and Constraining Rock Mechanical Properties in the San Joaquin Valley, California.

作者信息

Carlson Grace, Shirzaei Manoochehr, Ojha Chandrakanta, Werth Susanna

机构信息

School of Earth and Space Exploration Arizona State University Tempe AZ USA.

Department of Geosciences Virginia Tech Blacksburg VA USA.

出版信息

J Geophys Res Solid Earth. 2020 Sep;125(9):e2020JB019980. doi: 10.1029/2020JB019980. Epub 2020 Sep 11.

Abstract

Large-scale subsidence due to aquifer-overdraft is an ongoing hazard in the San Joaquin Valley. Subsidence continues to cause damage to infrastructure and increases the risk of extensional fissures.Here, we use InSAR-derived vertical land motion (VLM) to model the volumetric strain rate due to groundwater storage change during the 2007-2010 drought in the San Joaquin Valley, Central Valley, California. We then use this volumetric strain rate model to calculate surface tensile stress in order to predict regions that are at the highest risk for hazardous tensile surface fissures. We find a maximum volumetric strain rate of -232 microstrain/yr at a depth of 0 to 200 m in Tulare and Kings County, California. The highest risk of tensile fissure development occurs at the periphery of the largest subsiding zones, particularly in Tulare County and Merced County. Finally, we assume that subsidence is likely due to aquifer pressure change, which is calculated using groundwater level changes observed at 300 wells during this drought. We combine pressure data from selected wells with our volumetric strain maps to estimate the quasi-static bulk modulus, , a poroelastic parameter applicable when pressure change within the aquifer is inducing volumetric strain. This parameter is reflective of a slow deformation process and is one to two orders of magnitude lower than typical values for the bulk modulus found using seismic velocity data. The results of this study highlight the importance of large-scale, high-resolution VLM measurements in evaluating aquifer system dynamics, hazards associated with overdraft, and in estimating important poroelastic parameters.

摘要

由于含水层超采导致的大规模地面沉降是圣华金谷持续存在的危害。地面沉降继续对基础设施造成破坏,并增加了张性裂缝的风险。在此,我们利用合成孔径雷达干涉测量(InSAR)得出的垂直地面运动(VLM)来模拟2007 - 2010年加利福尼亚州中央谷圣华金谷干旱期间由于地下水储量变化引起的体应变率。然后,我们使用这个体应变率模型来计算地表拉应力,以预测危险的拉张地表裂缝风险最高的区域。我们发现在加利福尼亚州图莱里县和金斯县,深度0至200米处的最大体应变率为 -232微应变/年。拉张裂缝发育的最高风险出现在最大沉降区的周边,特别是在图莱里县和默塞德县。最后,我们假设沉降可能是由于含水层压力变化引起的,含水层压力变化是利用此次干旱期间在300口井观测到的地下水位变化来计算的。我们将选定井的压力数据与体应变图相结合,以估算准静态体积模量,这是一个适用于含水层内压力变化引起体应变时的多孔弹性参数。该参数反映了一个缓慢的变形过程,比使用地震波速度数据得出的体积模量典型值低一到两个数量级。本研究结果突出了大规模、高分辨率VLM测量在评估含水层系统动力学、与超采相关的危害以及估算重要多孔弹性参数方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验