Suppr超能文献

输液中心患者预约安排:一种混合整数鲁棒优化方法。

Scheduling patient appointment in an infusion center: a mixed integer robust optimization approach.

作者信息

Issabakhsh Mona, Lee Seokgi, Kang Hyojung

机构信息

Department of Industrial Engineering, University of Miami, 1251 Memorial Drive, 281, Coral Gables, FL, 33146, USA.

Kinesiology & Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA.

出版信息

Health Care Manag Sci. 2021 Mar;24(1):117-139. doi: 10.1007/s10729-020-09519-z. Epub 2020 Oct 12.

Abstract

Infusion centers are experiencing greater demand, resulting in long patient wait times. The duration of chemotherapy treatment sessions often varies, and this uncertainty also contributes to longer patient wait times and to staff overtime, if not managed properly. The impact of such long wait times can be significant for cancer patients due to their physical and emotional vulnerability. In this paper, a mixed integer programming infusion appointment scheduling (IAS) mathematical model is developed based on patient appointment data, obtained from a cancer center of an academic hospital in Central Virginia. This model minimizes the weighted sum of the total wait times of patients, the makespan and the number of beds used through the planning horizon. A mixed integer programming robust slack allocation (RSA) mathematical model is designed to find the optimal patient appointment schedules, considering the fact that infusion time of patients may take longer than expected. Since the models can only handle a small number of patients, a robust scheduling heuristic (RSH) is developed based on the adaptive large neighborhood search (ALNS) to find patient appointments of real size infusion centers. Computational experiments based on real data show the effectiveness of the scheduling models compared to the original scheduling system of the infusion center. Also, both robust approaches (RSA and RSH) are able to find more reliable schedules than their deterministic counterparts when infusion time of patients takes longer than the scheduled infusion time.

摘要

输液中心正面临着更大的需求,导致患者等待时间过长。化疗治疗疗程的时长往往各不相同,而且如果管理不当,这种不确定性也会导致患者等待时间延长和工作人员加班。由于癌症患者身体和情绪较为脆弱,如此长的等待时间所产生的影响可能非常重大。在本文中,基于从弗吉尼亚州中部一家学术医院的癌症中心获取的患者预约数据,开发了一个混合整数规划输液预约调度(IAS)数学模型。该模型在规划期内将患者总等待时间、完工时间和使用床位数量的加权总和最小化。设计了一个混合整数规划鲁棒松弛分配(RSA)数学模型,以找到最优的患者预约时间表,同时考虑到患者的输液时间可能比预期更长这一事实。由于这些模型只能处理少量患者,基于自适应大邻域搜索(ALNS)开发了一种鲁棒调度启发式算法(RSH),以找到实际规模输液中心的患者预约安排。基于真实数据的计算实验表明,与输液中心原来的调度系统相比,这些调度模型是有效的。此外,当患者的输液时间比预定输液时间长时,两种鲁棒方法(RSA和RSH)都能够比确定性方法找到更可靠的时间表。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验