van der Lubbe Stephanie C C, Vermeeren Pascal, Fonseca Guerra Célia, Bickelhaupt F Matthias
Department of Theoretical Chemistry, Amsterdam Institute of, Molecular and Life Sciences (AIMMS), Amsterdam Center of, Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands.
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333, CD, Leiden, The Netherlands.
Chemistry. 2020 Dec 1;26(67):15690-15699. doi: 10.1002/chem.202003768. Epub 2020 Nov 3.
When carbonyl ligands coordinate to transition metals, their bond distance either increases (classical) or decreases (nonclassical) with respect to the bond length in the isolated CO molecule. C-O expansion can easily be understood by π-back-donation, which results in a population of the CO's π*-antibonding orbital and hence a weakening of its bond. Nonclassical carbonyl ligands are less straightforward to explain, and their nature is still subject of an ongoing debate. In this work, we studied five isoelectronic octahedral complexes, namely Fe(CO) , Mn(CO) , Cr(CO) , V(CO) and Ti(CO) , at the ZORA-BLYP/TZ2P level of theory to explain this nonclassical behavior in the framework of Kohn-Sham molecular orbital theory. We show that there are two competing forces that affect the C-O bond length, namely electrostatic interactions (favoring C-O contraction) and π-back-donation (favoring C-O expansion). It is a balance between those two terms that determines whether the carbonyl is classical or nonclassical. By further decomposing the electrostatic interaction ΔV into four fundamental terms, we are able to rationalize why ΔV gives rise to the nonclassical behavior, leading to new insights into the driving forces behind C-O contraction.
当羰基配体与过渡金属配位时,相对于孤立的一氧化碳(CO)分子中的键长,它们的键距会增加(经典情况)或减小(非经典情况)。通过π-反馈键合可以很容易地理解碳氧键(C-O)的伸长,这会导致一氧化碳的π*反键轨道上有电子占据,从而使其键减弱。非经典羰基配体的情况较难解释,其本质仍是一个持续争论的话题。在这项工作中,我们在ZORA-BLYP/TZ2P理论水平下研究了五个等电子八面体配合物,即Fe(CO) 、Mn(CO) 、Cr(CO) 、V(CO) 和Ti(CO) ,以便在Kohn-Sham分子轨道理论框架内解释这种非经典行为。我们表明,有两种相互竞争的力会影响碳氧键长,即静电相互作用(有利于碳氧键收缩)和π-反馈键合(有利于碳氧键伸长)。正是这两个因素之间的平衡决定了羰基是经典的还是非经典的。通过将静电相互作用ΔV进一步分解为四个基本项,我们能够解释为什么ΔV会导致非经典行为,从而对碳氧键收缩背后的驱动力有了新的认识。