Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
Institut für Organische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
Genetics. 2020 Dec;216(4):1103-1116. doi: 10.1534/genetics.120.303623. Epub 2020 Oct 12.
Cell-to-cell fusion is crucial for the development and propagation of most eukaryotic organisms. Despite this importance, the molecular mechanisms mediating this process are only poorly understood in biological systems. In particular, the step of plasma membrane merger and the contributing proteins and physicochemical factors remain mostly unknown. Earlier studies provided the first evidence of a role of membrane sterols in cell-to-cell fusion. By characterizing different ergosterol biosynthesis mutants of the fungus , which accumulate different ergosterol precursors, we show that the structure of the sterol ring system specifically affects plasma membrane merger during the fusion of vegetative spore germlings. Genetic analyses pinpoint this defect to an event prior to engagement of the fusion machinery. Strikingly, this effect is not observed during sexual fusion, suggesting that the specific sterol precursors do not generally block membrane merger, but rather impair subcellular processes exclusively mediating fusion of vegetative cells. At a colony-wide level, the altered structure of the sterol ring system affects a subset of differentiation processes, including vegetative sporulation and steps before and after fertilization during sexual propagation. Together, these observations corroborate the notion that the accumulation of particular sterol precursors has very specific effects on defined cellular processes rather than nonspecifically disturbing membrane functioning. Given the phenotypic similarities of the ergosterol biosynthesis mutants of during vegetative fusion and of cells undergoing mating, our data support the idea that yeast mating is evolutionarily and mechanistically more closely related to vegetative than sexual fusion of filamentous fungi.
细胞融合对于大多数真核生物的发育和繁殖至关重要。尽管这一点很重要,但生物系统中介导这一过程的分子机制仍知之甚少。特别是,质膜融合的步骤以及参与的蛋白质和物理化学因素在很大程度上仍然未知。早期的研究首次提供了膜甾醇在细胞融合中的作用的证据。通过对真菌中积累不同麦角固醇前体的不同麦角固醇生物合成突变体进行表征,我们表明甾醇环系统的结构特异性影响了营养体孢子幼体融合过程中的质膜融合。遗传分析将这一缺陷指向融合机制参与之前的一个事件。引人注目的是,在有性融合过程中观察不到这种效应,这表明特定的甾醇前体通常不会阻止膜融合,而是损害专门介导营养细胞融合的亚细胞过程。在菌落水平上,甾醇环系统改变的结构会影响一组特定的分化过程,包括营养体孢子形成以及有性繁殖过程中受精前后的步骤。总之,这些观察结果证实了这样一种观点,即特定甾醇前体的积累对特定的细胞过程有非常具体的影响,而不是非特异性地干扰膜功能。鉴于在营养融合过程中麦角固醇生物合成突变体和正在交配的细胞之间的表型相似性,我们的数据支持这样一种观点,即酵母交配在进化和机制上与丝状真菌的营养融合比有性融合更为密切相关。