Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Advanced Scientific Research Leaders Development Unit, Gunma University Graduate School of Medicine, Maebashi, Japan.
J Am Soc Nephrol. 2020 Dec;31(12):2855-2869. doi: 10.1681/ASN.2020050580. Epub 2020 Oct 12.
Depletion of ATP in renal tubular cells plays the central role in the pathogenesis of kidney diseases. Nevertheless, inability to visualize spatiotemporal ATP distribution and dynamics has hindered further analysis.
A novel mouse line systemically expressing an ATP biosensor (an ATP synthase subunit and two fluorophores) revealed spatiotemporal ATP dynamics at single-cell resolution during warm and cold ischemic reperfusion (IR) with two-photon microscopy. This experimental system enabled quantification of fibrosis 2 weeks after IR and assessment of the relationship between the ATP recovery in acute phase and fibrosis in chronic phase.
Upon ischemia induction, the ATP levels of proximal tubule (PT) cells decreased to the nadir within a few minutes, whereas those of distal tubule (DT) cells decreased gradually up to 1 hour. Upon reperfusion, the recovery rate of ATP in PTs was slower with longer ischemia. In stark contrast, ATP in DTs was quickly rebounded irrespective of ischemia duration. Morphologic changes of mitochondria in the acute phase support the observation of different ATP dynamics in the two segments. Furthermore, slow and incomplete ATP recovery of PTs in the acute phase inversely correlated with fibrosis in the chronic phase. Ischemia under conditions of hypothermia resulted in more rapid and complete ATP recovery with less fibrosis, providing a proof of concept for use of hypothermia to protect kidney tissues.
Visualizing spatiotemporal ATP dynamics during IR injury revealed higher sensitivity of PT cells to ischemia compared with DT cells in terms of energy metabolism. The ATP dynamics of PTs in AKI might provide prognostic information.
肾管状细胞中 ATP 的消耗在肾脏疾病的发病机制中起着核心作用。然而,由于无法可视化时空 ATP 分布和动态,进一步的分析受到了阻碍。
通过双光子显微镜,利用系统性表达 ATP 生物传感器(一个 ATP 合酶亚基和两个荧光团)的新型小鼠系,在温热缺血再灌注期间以单细胞分辨率揭示了时空 ATP 动态。该实验系统能够定量评估再灌注后 2 周的纤维化,并评估急性相 ATP 恢复与慢性相纤维化之间的关系。
在诱导缺血时,近端肾小管 (PT) 细胞中的 ATP 水平在几分钟内降至最低点,而远端肾小管 (DT) 细胞中的 ATP 水平逐渐下降,直至 1 小时。再灌注时,PT 中的 ATP 恢复速度较慢,缺血时间较长。与此形成鲜明对比的是,无论缺血持续时间如何,DT 中的 ATP 都能迅速反弹。急性相中线粒体形态的变化支持两种节段中不同 ATP 动态的观察。此外,PT 在急性相的 ATP 恢复缓慢且不完全,与慢性相的纤维化呈负相关。在低温条件下进行缺血会导致更快、更完全的 ATP 恢复和更少的纤维化,为低温保护肾脏组织提供了概念验证。
在再灌注损伤期间可视化时空 ATP 动态,揭示了与 DT 细胞相比,PT 细胞在能量代谢方面对缺血更为敏感。AKI 中 PT 的 ATP 动力学可能提供预后信息。