Suppr超能文献

水相无酶合成天然磷脂。

Enzyme-free synthesis of natural phospholipids in water.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.

出版信息

Nat Chem. 2020 Nov;12(11):1029-1034. doi: 10.1038/s41557-020-00559-0. Epub 2020 Oct 12.

Abstract

All living organisms synthesize phospholipids as the primary constituent of their cell membranes. Enzymatic synthesis of diacylphospholipids requires preexisting membrane-embedded enzymes. This limitation has led to models of early life in which the first cells used simpler types of membrane building blocks and has hampered integration of phospholipid synthesis into artificial cells. Here we demonstrate an enzyme-free synthesis of natural diacylphospholipids by transacylation in water, which is enabled by a combination of ion pairing and self-assembly between lysophospholipids and acyl donors. A variety of membrane-forming cellular phospholipids have been obtained in high yields. Membrane formation takes place in water from natural alkaline sources such as soda lakes and hydrothermal oceanic vents. When formed vesicles are transferred to more acidic solutions, electrochemical proton gradients are spontaneously established and maintained. This high-yielding non-enzymatic synthesis of natural phospholipids in water opens up new routes for lipid synthesis in artificial cells and sheds light on the origin and evolution of cellular membranes.

摘要

所有生物体都将磷脂合成为细胞膜的主要成分。二酰基磷脂的酶促合成需要预先存在的膜嵌入酶。这种局限性导致了早期生命的模型,其中第一个细胞使用更简单类型的膜构建块,并阻碍了磷脂合成到人工细胞中的整合。在这里,我们通过水相中的转酰基反应展示了天然二酰基磷脂的无酶合成,这得益于溶血磷脂和酰基供体之间的离子配对和自组装的组合。已经以高产率获得了多种形成膜的细胞磷脂。在天然碱性来源(如苏打湖和热液海洋喷口)的水中形成膜。当形成的囊泡转移到更酸性的溶液中时,电化学质子梯度会自动建立和维持。这种在水中高产率的非酶法天然磷脂合成开辟了人工细胞中脂质合成的新途径,并阐明了细胞膜的起源和进化。

相似文献

1
Enzyme-free synthesis of natural phospholipids in water.
Nat Chem. 2020 Nov;12(11):1029-1034. doi: 10.1038/s41557-020-00559-0. Epub 2020 Oct 12.
2
Transacylation between diacylphospholipids and 2-acyl lysophospholipids catalyzed by Escherichia coli extract.
J Biochem. 1982 Apr;91(4):1093-101. doi: 10.1093/oxfordjournals.jbchem.a133791.
3
Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8187-92. doi: 10.1073/pnas.1506704112. Epub 2015 Jun 22.
4
Membrane properties of archaeal macrocyclic diether phospholipids.
Chemistry. 2000 Feb 18;6(4):645-54. doi: 10.1002/(sici)1521-3765(20000218)6:4<645::aid-chem645>3.0.co;2-a.
7
In situ vesicle formation by native chemical ligation.
Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14102-5. doi: 10.1002/anie.201408538. Epub 2014 Oct 24.
8
Rapid Formation of Non-canonical Phospholipid Membranes by Chemoselective Amide-Forming Ligations with Hydroxylamines.
Angew Chem Int Ed Engl. 2024 Jan 2;63(1):e202311635. doi: 10.1002/anie.202311635. Epub 2023 Nov 28.
9
Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8589-94. doi: 10.1073/pnas.1605541113. Epub 2016 Jul 20.
10
A minimal biochemical route towards de novo formation of synthetic phospholipid membranes.
Nat Commun. 2019 Jan 17;10(1):300. doi: 10.1038/s41467-018-08174-x.

引用本文的文献

1
Aqueous Synthesis of Membrane Lipids via Amide Formation between Amphiphilic Amines and Thioacids.
ChemSystemsChem. 2025 May;7(3). doi: 10.1002/syst.202400077. Epub 2024 Dec 29.
2
From experimental clues to theoretical modeling: Evolution associated with the membrane-takeover at an early stage of life.
PLoS Comput Biol. 2025 Jun 13;21(6):e1012763. doi: 10.1371/journal.pcbi.1012763. eCollection 2025 Jun.
4
Photochemical synthesis of natural lipids in artificial and living cells.
Nat Commun. 2025 May 31;16(1):5068. doi: 10.1038/s41467-025-60358-4.
5
Chemiosmotic ATP synthesis by minimal protocells.
Cell Rep Phys Sci. 2025 Mar 19;6(3):102461. doi: 10.1016/j.xcrp.2025.102461.
6
Electricity in the Creation of Life.
Rev Physiol Biochem Pharmacol. 2025;187:19-28. doi: 10.1007/978-3-031-68827-0_3.
7
Synthetic Lipid Biology.
Chem Rev. 2025 Feb 26;125(4):2502-2560. doi: 10.1021/acs.chemrev.4c00761. Epub 2025 Jan 13.
8
Diacylation of Peptides Enables the Construction of Functional Vesicles for Drug-Carrying Liposomes.
Angew Chem Int Ed Engl. 2025 May 12;64(20):e202421932. doi: 10.1002/anie.202421932. Epub 2025 Apr 7.
9
Groundwater-Driven Evolution of Prebiotic Alkaline Lake Environments.
Life (Basel). 2024 Dec 7;14(12):1624. doi: 10.3390/life14121624.
10
Protocells by spontaneous reaction of cysteine with short-chain thioesters.
Nat Chem. 2025 Jan;17(1):148-155. doi: 10.1038/s41557-024-01666-y. Epub 2024 Oct 30.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验