Moh Do Yoon, Fang Chao, Yin Xiaolong, Qiao Rui
Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
Phys Chem Chem Phys. 2020 Oct 21;22(40):23057-23063. doi: 10.1039/d0cp03930f.
CO2-based enhanced oil recovery is widely practiced. The current understanding of its mechanisms largely focuses on bulk phenomena such as achieving miscibility or reducing oil density and viscosity. Using molecular dynamics simulations, we show that CO2 adsorption on calcite surfaces impedes decane transport at moderate adsorption density but enhances decane transport when CO2 adsorption approaches surface saturation. These effects change the decane permeability through 8 nm-wide pores by up to 30% and become negligible only in pores wider than several tens of nanometers. The strongly nonlinear, non-monotonic dependence of decane permeability on CO2 adsorption is traced to CO2's modulation of interfacial structure of long-chain hydrocarbons, and thus the slippage between interfacial hydrocarbon layers and between interfacial CO2 and hydrocarbon layers. These results highlight a new and critical role of CO2-induced interfacial effects in influencing oil recovery from unconventional reservoirs, whose porosity is dominated by nanopores.
基于二氧化碳的强化采油技术已被广泛应用。目前对其机理的理解主要集中在宏观现象上,如实现混相或降低原油密度和粘度。通过分子动力学模拟,我们发现二氧化碳在方解石表面的吸附在中等吸附密度下会阻碍癸烷的传输,但当二氧化碳吸附接近表面饱和时会增强癸烷的传输。这些效应使癸烷通过8纳米宽孔隙的渗透率变化高达30%,并且只有在几十纳米以上的宽孔隙中才可以忽略不计。癸烷渗透率对二氧化碳吸附的强烈非线性、非单调依赖性源于二氧化碳对长链烃界面结构的调制,进而导致界面烃层之间以及界面二氧化碳与烃层之间的滑移。这些结果突出了二氧化碳诱导的界面效应在影响非常规油藏(其孔隙度以纳米孔为主)采油中的一个新的关键作用。