Suppr超能文献

纳米受限通道中癸烷与一氧化碳最小混溶压力的直接测量

Direct Measurement of Minimum Miscibility Pressure of Decane and CO in Nanoconfined Channels.

作者信息

Bao Bo, Feng Jia, Qiu Junjie, Zhao Shuangliang

机构信息

State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.

出版信息

ACS Omega. 2020 Dec 21;6(1):943-953. doi: 10.1021/acsomega.0c05584. eCollection 2021 Jan 12.

Abstract

Determining gas and oil minimum miscibility pressure (MMP) plays a vital role in the enhanced oil recovery. Injecting gases above the MMP into oil reservoirs leads to a relatively high oil recovery ratio. For conventional reservoirs, the fluid bulk MMP is measured by lab techniques such as the rising bubble approach. However, for the increasingly important tight and shale reservoirs, oil is confined in nanoscale pores. Nanoscopic MMP remains largely unknown from experiments and relies heavily on theoretical predictions. To close this gap, we developed a nanofluidic device to determine the MMP down to 50 nm by measuring the fluorescence intensity change in a nanoconfined channel. CO and decane are used as the working fluids, with 1% fluorescent dye for characterization. At the isothermal condition, the fluorescence intensity in decane reduces with the injecting CO pressure increasing, and the maximum fluorescence intensity reduction at certain CO pressure indicates the MMP being reached. We measured and compared CO and decane MMP at the bulk scale (5 μm) and nanoscale (50 nm). The experimental results align well with literature data and theoretical predictions. Importantly, our nanofluidic approach provides a promising strategy to determine the nanoscopic fluid MMP and is readily applicable in assisting the enhanced tight/shale oil recovery.

摘要

确定气-油最小混相压力(MMP)在提高原油采收率方面起着至关重要的作用。将高于MMP的气体注入油藏可实现相对较高的采收率。对于常规油藏,流体整体MMP通过诸如上升气泡法等实验室技术来测量。然而,对于日益重要的致密油藏和页岩油藏,油被限制在纳米级孔隙中。纳米级MMP在很大程度上仍未通过实验得知,且严重依赖理论预测。为了填补这一空白,我们开发了一种纳米流体装置,通过测量纳米受限通道中的荧光强度变化来确定低至50纳米的MMP。一氧化碳(CO)和癸烷用作工作流体,并添加1%的荧光染料用于表征。在等温条件下,随着注入CO压力的增加,癸烷中的荧光强度降低,在一定CO压力下荧光强度的最大降低表明达到了MMP。我们测量并比较了CO与癸烷在宏观尺度(5微米)和纳米尺度(50纳米)下的MMP。实验结果与文献数据和理论预测吻合良好。重要的是,我们的纳米流体方法为确定纳米级流体MMP提供了一种有前景的策略,并且易于应用于辅助提高致密油/页岩油采收率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d7c/7808140/f96081cb84d6/ao0c05584_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验