Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
Exosomes Lab, CIC bioGUNE, CIBERehd, Derio, Spain.
Chemistry. 2021 Jan 26;27(6):2149-2154. doi: 10.1002/chem.202004522. Epub 2021 Jan 14.
Glycans possess unparalleled structural complexity arising from chemically similar monosaccharide building blocks, configurations of anomeric linkages and different branching patterns, potentially giving rise to many isomers. This level of complexity is one of the main reasons that identification of exact glycan structures in biological samples still lags behind that of other biomolecules. Here, we introduce a methodology to identify isomeric N-glycans by determining gas phase conformer distributions (CDs) by measuring arrival time distributions (ATDs) using drift-tube ion mobility spectrometry-mass spectrometry. Key to the approach is the use of a range of well-defined synthetic glycans that made it possible to investigate conformer distributions in the gas phase of isomeric glycans in a systematic manner. In addition, we have computed CD fingerprints by molecular dynamics (MD) simulation, which compared well with experimentally determined CDs. It supports that ATDs resemble conformational populations in the gas phase and offer the prospect that such an approach can contribute to generating a library of CCS distributions (CCSDs) for structure identification.
糖链具有无与伦比的结构复杂性,这源于化学性质相似的单糖结构单元、端基构型和不同的支链模式,从而可能产生许多同分异构体。这种复杂程度是导致生物样本中糖链结构的鉴定仍然落后于其他生物分子的主要原因之一。在这里,我们介绍了一种通过使用漂移管离子淌度谱-质谱法测量到达时间分布(ATD)来确定气相构象分布(CDs)的方法,从而鉴定同分异构体 N-糖链的方法。该方法的关键是使用一系列定义明确的合成糖,这使得能够系统地研究同分异构体糖在气相中的构象分布。此外,我们还通过分子动力学(MD)模拟计算了 CD 指纹图谱,与实验测定的 CD 图谱吻合较好。这表明 ATD 类似于气相中的构象分布,并为这种方法可能有助于生成用于结构鉴定的 CCS 分布(CCSDs)库提供了前景。