Suppr超能文献

生物相容性谷胱甘肽:柠檬酸盐封端的氧化铜纳米粒子对多药耐药性肠道致病菌的有效杀菌和伤口愈合效力。

Effective Biocidal and Wound Healing Cogency of Biocompatible Glutathione: Citrate-Capped Copper Oxide Nanoparticles Against Multidrug-Resistant Pathogenic Enterobacteria.

机构信息

Department of Microbiology, University of Kalyani, Kalyani, India.

出版信息

Microb Drug Resist. 2021 May;27(5):616-627. doi: 10.1089/mdr.2020.0131. Epub 2020 Oct 12.

Abstract

Multidrug-resistant (MDR) superficial bacterial infections caused by carbapenem-resistant sp. and sp. have emerged as major threats toward global health care management. In search of a novel antimicrobial, our main objectives were to explore the antimicrobial, antibiofilm, and wound healing potential of glutathione and citrate-capped copper oxide nanoparticles (CuNPs) against gram-negative MDR pathogens and sp., ensuring the lowest possible host cell nano-cytotoxicity and minimum susceptibility of the CuNPs toward oxidation. The CuNPs were found to elicit reactive oxygen species (ROS) generation within bacterial cells, inhibiting the bacterial growth and division. They contributed to the remodeling of the bacterial lipopolysaccharide, induced membrane lysis, and promoted antibiofilm activities by reduced cell-cell aggregation and matrix destabilization while displaying excellent biocompatibility against HEK-293 and HeLa cell lines. The CuNPs were also instrumental in preventing postsurgical wound infections and aiding in wound closure in the murine excisional wound model, as observed in albino Wistar rats, forcing us to believe that the CuNPs are bioactive in wound therapy. The results are encouraging and demands further experimental exploitation of the particles in treating other MDR gram-negative infections, irrespective of their resistance status.

摘要

耐多药(MDR)的表浅细菌感染由耐碳青霉烯的 和 引起,这些细菌已成为全球医疗保健管理的主要威胁。为了寻找一种新型抗菌剂,我们的主要目标是探索谷胱甘肽和柠檬酸盐包覆的氧化铜纳米粒子(CuNPs)对革兰氏阴性 MDR 病原体 和 株的抗菌、抗生物膜和伤口愈合潜力,同时确保宿主细胞纳米毒性尽可能低,CuNPs 对氧化的敏感性最小。研究发现,CuNPs 能够在细菌细胞内产生活性氧(ROS),抑制细菌的生长和分裂。它们有助于重塑细菌脂多糖,诱导膜裂解,并通过减少细胞-细胞聚集和基质失稳来促进抗生物膜活性,同时对 HEK-293 和 HeLa 细胞系表现出良好的生物相容性。CuNPs 还能够防止手术后伤口感染,并在鼠切除伤口模型中促进伤口闭合,这在白化 Wistar 大鼠中得到了观察,这使我们相信 CuNPs 在伤口治疗中具有生物活性。这些结果令人鼓舞,需要进一步实验开发这些颗粒来治疗其他 MDR 革兰氏阴性感染,而不论其耐药状态如何。

相似文献

5
Biogenic phytochemicals (cassinopin and isoquercetin) capped copper nanoparticles (ISQ/CAS@CuNPs) inhibits MRSA biofilms.
Microb Pathog. 2019 Jul;132:178-187. doi: 10.1016/j.micpath.2019.05.005. Epub 2019 May 4.
6
Effective elimination of biofilm formed with waterborne pathogens using copper nanoparticles.
Microb Pathog. 2019 Feb;127:341-346. doi: 10.1016/j.micpath.2018.12.025. Epub 2018 Dec 14.
8
Antibacterial activity of colloidal copper nanoparticles against Gram-negative (Escherichia coli and Proteus vulgaris) bacteria.
Lett Appl Microbiol. 2022 May;74(5):695-706. doi: 10.1111/lam.13655. Epub 2022 Jan 30.
9
Development of Antibiofilm Nanocomposites: Ag/Cu Bimetallic Nanoparticles Synthesized on the Surface of Graphene Oxide Nanosheets.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):35826-35834. doi: 10.1021/acsami.0c06054. Epub 2020 Jul 28.

引用本文的文献

1
Mechanism of N-Acetyl-D-alloisoleucine in Controlling Strawberry Black Root Rot.
Plants (Basel). 2025 Mar 6;14(5):829. doi: 10.3390/plants14050829.
3
Glutathione: A Key Regulator of Extracellular Matrix and Cell Death in Intervertebral Disc Degeneration.
Mediators Inflamm. 2024 Oct 1;2024:4482642. doi: 10.1155/2024/4482642. eCollection 2024.
7
Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges.
Molecules. 2023 Sep 18;28(18):6687. doi: 10.3390/molecules28186687.
8
Applications of drug delivery systems, organic, and inorganic nanomaterials in wound healing.
Discov Nano. 2023 Aug 22;18(1):104. doi: 10.1186/s11671-023-03880-y.
9
PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles.
J Nanobiotechnology. 2022 Mar 19;20(1):149. doi: 10.1186/s12951-022-01338-4.
10
Engineered Nanotechnology: An Effective Therapeutic Platform for the Chronic Cutaneous Wound.
Nanomaterials (Basel). 2022 Feb 25;12(5):778. doi: 10.3390/nano12050778.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验