Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.
Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.
Elife. 2020 Oct 13;9:e58882. doi: 10.7554/eLife.58882.
Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV () with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, -microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.
利用高分辨率和同质性在视场(FOV)内实现对深层脑区的神经活动进行成像,且具有较低的侵入性,这对神经科学的发展至关重要,但这也是一项重大的技术挑战。我们通过使用通过 3D 微打印生成的非球面微透镜来校正基于梯度折射率透镜的超薄(≤500 µm)微内窥镜中的像差,从而实现了这一目标。校正后的微内窥镜具有扩展的 FOV(),具有用于双光子荧光成像的同质性空间分辨率,并且不需要对光学设置进行任何修改。合成钙成像数据表明,与未校正的内窥镜相比,-微内窥镜可提高信噪比,并更精确地评估相关的神经元活动。我们在清醒固定头部的小鼠中对这些预测进行了实验验证。此外,我们使用微内窥镜在初级体感丘脑核的分布式功能子网中证明了行为状态相关信息的细胞特异性编码。因此,-微内窥镜是一种小横截面的即用型工具,可用于具有空前高分辨率和同质性的深层双光子功能成像。