Fischer Maximilian T, Arya Devanshu, Streeb Dirk, Seebacher Daniel, Keim Daniel A, Worring Marcel
IEEE Trans Vis Comput Graph. 2021 Feb;27(2):550-560. doi: 10.1109/TVCG.2020.3030408. Epub 2021 Jan 28.
Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any number of vertices, allowing complex relationships to be described more accurately and predict their behavior over time. However, the interactive exploration and seamless refinement of such hypergraph-based prediction models still pose a major challenge. We contribute Hyper-Matrix, a novel visual analytics technique that addresses this challenge through a tight coupling between machine-learning and interactive visualizations. In particular, the technique incorporates a geometric deep learning model as a blueprint for problem-specific models while integrating visualizations for graph-based and category-based data with a novel combination of interactions for an effective user-driven exploration of hypergraph models. To eliminate demanding context switches and ensure scalability, our matrix-based visualization provides drill-down capabilities across multiple levels of semantic zoom, from an overview of model predictions down to the content. We facilitate a focused analysis of relevant connections and groups based on interactive user-steering for filtering and search tasks, a dynamically modifiable partition hierarchy, various matrix reordering techniques, and interactive model feedback. We evaluate our technique in a case study and through formative evaluation with law enforcement experts using real-world internet forum communication data. The results show that our approach surpasses existing solutions in terms of scalability and applicability, enables the incorporation of domain knowledge, and allows for fast search-space traversal. With the proposed technique, we pave the way for the visual analytics of temporal hypergraphs in a wide variety of domains.
从生物学中的基因相互作用到计算机网络再到社交媒体,许多过程用时态超图建模比用常规图建模能更精确。这是因为超图通过将边扩展为可连接任意数量的顶点来推广图,从而能够更准确地描述复杂关系并预测其随时间的行为。然而,基于此类超图的预测模型的交互式探索和无缝细化仍然是一个重大挑战。我们提出了Hyper-Matrix,这是一种新颖的可视化分析技术,通过机器学习与交互式可视化之间的紧密耦合来应对这一挑战。具体而言,该技术将几何深度学习模型作为特定问题模型的蓝图,同时将基于图和基于类别的数据的可视化与新颖的交互组合集成在一起,以实现用户驱动的超图模型有效探索。为了消除苛刻的上下文切换并确保可扩展性,我们基于矩阵的可视化提供了跨多个语义缩放级别的向下钻取功能,从模型预测的概述到内容。我们通过交互式用户引导来促进对相关连接和组的重点分析,以进行过滤和搜索任务、动态可修改的分区层次结构、各种矩阵重新排序技术以及交互式模型反馈。我们在一个案例研究中以及通过与执法专家使用真实世界互联网论坛通信数据进行的形成性评估来评估我们的技术。结果表明,我们的方法在可扩展性和适用性方面超越了现有解决方案,能够纳入领域知识,并允许快速遍历搜索空间。通过所提出的技术,我们为在广泛领域中进行时态超图的可视化分析铺平了道路。