Suppr超能文献

机器学习中的歧视可视化分析。

Visual Analysis of Discrimination in Machine Learning.

出版信息

IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1470-1480. doi: 10.1109/TVCG.2020.3030471. Epub 2021 Jan 28.

Abstract

The growing use of automated decision-making in critical applications, such as crime prediction and college admission, has raised questions about fairness in machine learning. How can we decide whether different treatments are reasonable or discriminatory? In this paper, we investigate discrimination in machine learning from a visual analytics perspective and propose an interactive visualization tool, DiscriLens, to support a more comprehensive analysis. To reveal detailed information on algorithmic discrimination, DiscriLens identifies a collection of potentially discriminatory itemsets based on causal modeling and classification rules mining. By combining an extended Euler diagram with a matrix-based visualization, we develop a novel set visualization to facilitate the exploration and interpretation of discriminatory itemsets. A user study shows that users can interpret the visually encoded information in DiscriLens quickly and accurately. Use cases demonstrate that DiscriLens provides informative guidance in understanding and reducing algorithmic discrimination.

摘要

自动化决策在犯罪预测和大学录取等关键应用中的使用日益增多,这引发了人们对于机器学习公平性的关注。我们如何判断不同的处理方式是否合理或具有歧视性?在本文中,我们从可视分析的角度研究机器学习中的歧视问题,并提出了一种交互式可视化工具 DiscriLens,以支持更全面的分析。为了揭示算法歧视的详细信息,DiscriLens 基于因果建模和分类规则挖掘,识别出一组潜在的具有歧视性的项目集。通过将扩展的 Euler 图与基于矩阵的可视化相结合,我们开发了一种新的集合可视化方法,以方便对具有歧视性的项目集进行探索和解释。用户研究表明,用户可以快速准确地解释 DiscriLens 中视觉编码的信息。用例演示表明,DiscriLens 为理解和减少算法歧视提供了有价值的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验