Suppr超能文献

KNowNEt:通过知识图谱集成从大型语言模型中引导健康信息检索。

KNowNEt:Guided Health Information Seeking from LLMs via Knowledge Graph Integration.

作者信息

Yan Youfu, Hou Yu, Xiao Yongkang, Zhang Rui, Wang Qianwen

出版信息

IEEE Trans Vis Comput Graph. 2025 Jan;31(1):547-557. doi: 10.1109/TVCG.2024.3456364. Epub 2024 Dec 3.

Abstract

The increasing reliance on Large Language Models (LLMs) for health information seeking can pose severe risks due to the potential for misinformation and the complexity of these topics. This paper introduces KnowNet a visualization system that integrates LLMs with Knowledge Graphs (KG) to provide enhanced accuracy and structured exploration. Specifically, for enhanced accuracy, KnowNet extracts triples (e.g., entities and their relations) from LLM outputs and maps them into the validated information and supported evidence in external KGs. For structured exploration, KnowNet provides next-step recommendations based on the neighborhood of the currently explored entities in KGs, aiming to guide a comprehensive understanding without overlooking critical aspects. To enable reasoning with both the structured data in KGs and the unstructured outputs from LLMs, KnowNet conceptualizes the understanding of a subject as the gradual construction of graph visualization. A progressive graph visualization is introduced to monitor past inquiries, and bridge the current query with the exploration history and next-step recommendations. We demonstrate the effectiveness of our system via use cases and expert interviews.

摘要

由于存在错误信息的可能性以及这些主题的复杂性,越来越依赖大语言模型(LLMs)来寻求健康信息可能会带来严重风险。本文介绍了KnowNet,这是一种将大语言模型与知识图谱(KG)集成的可视化系统,以提供更高的准确性和结构化探索。具体而言,为了提高准确性,KnowNet从大语言模型输出中提取三元组(例如,实体及其关系),并将它们映射到外部知识图谱中的经过验证的信息和支持证据。对于结构化探索,KnowNet根据知识图谱中当前探索实体的邻域提供下一步建议,旨在在不忽略关键方面的情况下引导全面理解。为了能够同时使用知识图谱中的结构化数据和大语言模型的非结构化输出进行推理,KnowNet将对主题的理解概念化为图可视化的逐步构建。引入了渐进式图可视化来监控过去的查询,并将当前查询与探索历史和下一步建议联系起来。我们通过用例和专家访谈证明了我们系统的有效性。

相似文献

本文引用的文献

3
PromptMagician: Interactive Prompt Engineering for Text-to-Image Creation.PromptMagician:用于文本到图像创作的交互式提示工程。
IEEE Trans Vis Comput Graph. 2024 Jan;30(1):295-305. doi: 10.1109/TVCG.2023.3327168. Epub 2023 Dec 25.
6
Polyphony: an Interactive Transfer Learning Framework for Single-Cell Data Analysis.多音性:单细胞数据分析的交互式迁移学习框架。
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):591-601. doi: 10.1109/TVCG.2022.3209408. Epub 2022 Dec 20.
9
ThreadStates: State-based Visual Analysis of Disease Progression.ThreadStates:基于状态的疾病进展可视化分析。
IEEE Trans Vis Comput Graph. 2022 Jan;28(1):238-247. doi: 10.1109/TVCG.2021.3114840. Epub 2021 Dec 24.
10
Visual Analysis of Discrimination in Machine Learning.机器学习中的歧视可视化分析。
IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1470-1480. doi: 10.1109/TVCG.2020.3030471. Epub 2021 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验