Yan Youfu, Hou Yu, Xiao Yongkang, Zhang Rui, Wang Qianwen
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):547-557. doi: 10.1109/TVCG.2024.3456364. Epub 2024 Dec 3.
The increasing reliance on Large Language Models (LLMs) for health information seeking can pose severe risks due to the potential for misinformation and the complexity of these topics. This paper introduces KnowNet a visualization system that integrates LLMs with Knowledge Graphs (KG) to provide enhanced accuracy and structured exploration. Specifically, for enhanced accuracy, KnowNet extracts triples (e.g., entities and their relations) from LLM outputs and maps them into the validated information and supported evidence in external KGs. For structured exploration, KnowNet provides next-step recommendations based on the neighborhood of the currently explored entities in KGs, aiming to guide a comprehensive understanding without overlooking critical aspects. To enable reasoning with both the structured data in KGs and the unstructured outputs from LLMs, KnowNet conceptualizes the understanding of a subject as the gradual construction of graph visualization. A progressive graph visualization is introduced to monitor past inquiries, and bridge the current query with the exploration history and next-step recommendations. We demonstrate the effectiveness of our system via use cases and expert interviews.
由于存在错误信息的可能性以及这些主题的复杂性,越来越依赖大语言模型(LLMs)来寻求健康信息可能会带来严重风险。本文介绍了KnowNet,这是一种将大语言模型与知识图谱(KG)集成的可视化系统,以提供更高的准确性和结构化探索。具体而言,为了提高准确性,KnowNet从大语言模型输出中提取三元组(例如,实体及其关系),并将它们映射到外部知识图谱中的经过验证的信息和支持证据。对于结构化探索,KnowNet根据知识图谱中当前探索实体的邻域提供下一步建议,旨在在不忽略关键方面的情况下引导全面理解。为了能够同时使用知识图谱中的结构化数据和大语言模型的非结构化输出进行推理,KnowNet将对主题的理解概念化为图可视化的逐步构建。引入了渐进式图可视化来监控过去的查询,并将当前查询与探索历史和下一步建议联系起来。我们通过用例和专家访谈证明了我们系统的有效性。