Department of Future Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan.
AJR Am J Roentgenol. 2020 Dec;215(6):1321-1328. doi: 10.2214/AJR.19.22680. Epub 2020 Oct 14.
The objective of our study was to assess the effect of the combination of deep learning-based denoising (DLD) and iterative reconstruction (IR) on image quality and Lung Imaging Reporting and Data System (Lung-RADS) evaluation on chest ultra-low-dose CT (ULDCT). Forty-one patients with 252 nodules were evaluated retrospectively. All patients underwent ULDCT (mean ± SD, 0.19 ± 0.01 mSv) and standard-dose CT (SDCT) (6.46 ± 2.28 mSv). ULDCT images were reconstructed using hybrid iterative reconstruction (HIR) and model-based iterative reconstruction (MBIR), and they were postprocessed using DLD (i.e., HIR-DLD and MBIR-DLD). SDCT images were reconstructed using filtered back projection. Three independent radiologists subjectively evaluated HIR, HIR-DLD, MBIR, and MBIR-DLD images on a 5-point scale in terms of noise, streak artifact, nodule edge, clarity of small vessels, homogeneity of the normal lung parenchyma, and overall image quality. Two radiologists independently evaluated the nodules according to Lung-RADS using HIR, MBIR, HIR-DLD, and MBIR-DLD ULDCT images and SDCT images. The median scores for subjective analysis were analyzed using Wilcoxon signed rank test with Bonferroni correction. Intraobserver agreement for Lung-RADS category between ULDCT and SDCT was evaluated using the weighted kappa coefficient. In the subjective analysis, ULDCT with DLD showed significantly better scores than did ULDCT without DLD ( < 0.001), and MBIR-DLD showed the best scores among the ULDCT images ( < 0.001) for all items. In the Lung-RADS evaluation, HIR showed fair or moderate agreement (reader 1 and reader 2: κw = 0.46 and 0.32, respectively); MBIR, moderate or good agreement (κw = 0.68 and 0.57); HIR-DLD, moderate agreement (κw = 0.53 and 0.48); and MBIR-DLD, good agreement (κw = 0.70 and 0.72). DLD improved the image quality of both HIR and MBIR on ULDCT. MBIR-DLD was superior to HIR_DLD for image quality and for Lung-RADS evaluation.
我们的研究目的是评估基于深度学习的去噪(DLD)和迭代重建(IR)联合应用于超低剂量 CT(ULDCT)对图像质量和肺影像报告和数据系统(Lung-RADS)评估的效果。回顾性评估了 41 名 252 个结节患者。所有患者均行 ULDCT(均值±标准差,0.19±0.01mSv)和标准剂量 CT(SDCT)(6.46±2.28mSv)检查。ULDCT 图像采用混合迭代重建(HIR)和基于模型的迭代重建(MBIR)重建,并用 DLD 进行后处理(即 HIR-DLD 和 MBIR-DLD)。SDCT 图像采用滤波反投影重建。3 名独立放射科医师采用 5 分制主观评价 HIR、HIR-DLD、MBIR 和 MBIR-DLD 图像的噪声、条纹伪影、结节边缘、小血管清晰度、正常肺实质均匀度和整体图像质量。2 名放射科医师采用 HIR、MBIR、HIR-DLD 和 MBIR-DLD ULDCT 图像和 SDCT 图像对结节进行独立的 Lung-RADS 评估。采用 Wilcoxon 符号秩检验(Bonferroni 校正)对主观分析的中位数评分进行分析。采用加权 kappa 系数评估 ULDCT 和 SDCT 之间 Lung-RADS 类别的观察者间一致性。主观分析中,与未行 DLD 的 ULDCT 相比,行 DLD 的 ULDCT 评分显著更高(<0.001),MBIR-DLD 对 ULDCT 图像的所有项目评分均最高(<0.001)。在 Lung-RADS 评估中,HIR 表现为一般或中度一致性(观察者 1 和观察者 2:κw=0.46 和 0.32);MBIR 为中度或高度一致性(κw=0.68 和 0.57);HIR-DLD 为中度一致性(κw=0.53 和 0.48);MBIR-DLD 为高度一致性(κw=0.70 和 0.72)。DLD 提高了 ULDCT 中 HIR 和 MBIR 的图像质量。MBIR-DLD 图像质量和 Lung-RADS 评估均优于 HIR-DLD。