Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
Eur Radiol. 2023 May;33(5):3253-3265. doi: 10.1007/s00330-023-09559-3. Epub 2023 Mar 28.
To evaluate the image quality of deep learning-based reconstruction (DLR), model-based (MBIR), and hybrid iterative reconstruction (HIR) algorithms for lower-dose (LD) unenhanced head CT and compare it with those of standard-dose (STD) HIR images.
This retrospective study included 114 patients who underwent unenhanced head CT using the STD (n = 57) or LD (n = 57) protocol on a 320-row CT. STD images were reconstructed with HIR; LD images were reconstructed with HIR (LD-HIR), MBIR (LD-MBIR), and DLR (LD-DLR). The image noise, gray and white matter (GM-WM) contrast, and contrast-to-noise ratio (CNR) at the basal ganglia and posterior fossa levels were quantified. The noise magnitude, noise texture, GM-WM contrast, image sharpness, streak artifact, and subjective acceptability were independently scored by three radiologists (1 = worst, 5 = best). The lesion conspicuity of LD-HIR, LD-MBIR, and LD-DLR was ranked through side-by-side assessments (1 = worst, 3 = best). Reconstruction times of three algorithms were measured.
The effective dose of LD was 25% lower than that of STD. Lower image noise, higher GM-WM contrast, and higher CNR were observed in LD-DLR and LD-MBIR than those in STD (all, p ≤ 0.035). Compared with STD, the noise texture, image sharpness, and subjective acceptability were inferior for LD-MBIR and superior for LD-DLR (all, p < 0.001). The lesion conspicuity of LD-DLR (2.9 ± 0.2) was higher than that of HIR (1.2 ± 0.3) and MBIR (1.8 ± 0.4) (all, p < 0.001). Reconstruction times of HIR, MBIR, and DLR were 11 ± 1, 319 ± 17, and 24 ± 1 s, respectively.
DLR can enhance the image quality of head CT while preserving low radiation dose level and short reconstruction time.
• For unenhanced head CT, DLR reduced the image noise and improved the GM-WM contrast and lesion delineation without sacrificing the natural noise texture and image sharpness relative to HIR. • The subjective and objective image quality of DLR was better than that of HIR even at 25% reduced dose without considerably increasing the image reconstruction times (24 s vs. 11 s). • Despite the strong noise reduction and improved GM-WM contrast performance, MBIR degraded the noise texture, sharpness, and subjective acceptance with prolonged reconstruction times relative to HIR, potentially hampering its feasibility.
评估基于深度学习的重建(DLR)、基于模型的重建(MBIR)和混合迭代重建(HIR)算法在低剂量(LD)头部 CT 中的图像质量,并与标准剂量(STD)HIR 图像进行比较。
这是一项回顾性研究,纳入了 114 名接受了头部 CT 平扫的患者,这些患者分别采用了标准剂量(n=57)或低剂量(n=57)方案进行检查。标准剂量图像采用 HIR 重建;低剂量图像采用 HIR(LD-HIR)、MBIR(LD-MBIR)和 DLR(LD-DLR)重建。对图像噪声、灰白质对比(GM-WM)和基底节及后颅窝的对比噪声比(CNR)进行量化。三位放射科医生对噪声幅度、噪声纹理、GM-WM 对比度、图像锐度、条纹伪影和主观可接受性进行独立评分(1=最差,5=最佳)。通过并排评估对 LD-HIR、LD-MBIR 和 LD-DLR 的病灶显示程度进行排名(1=最差,3=最佳)。测量了三种算法的重建时间。
低剂量组的有效剂量比标准剂量组低 25%。与标准剂量组相比,LD-DLR 和 LD-MBIR 的图像噪声更低、GM-WM 对比度更高、CNR 更高(均,p≤0.035)。与标准剂量组相比,LD-MBIR 的噪声纹理、图像锐度和主观可接受性较差,而 LD-DLR 则更好(均,p<0.001)。LD-DLR 的病灶显示程度(2.9±0.2)高于 HIR(1.2±0.3)和 MBIR(1.8±0.4)(均,p<0.001)。HIR、MBIR 和 DLR 的重建时间分别为 11±1、319±17 和 24±1 s。
DLR 可在保持低辐射剂量和较短重建时间的同时,提高头部 CT 的图像质量。
对于头部 CT 平扫,与 HIR 相比,DLR 降低了图像噪声,提高了 GM-WM 对比度和病灶勾画的清晰度,同时保留了自然噪声纹理和图像锐度。
即使在降低 25%剂量的情况下,DLR 的主观和客观图像质量也优于 HIR,而重建时间仅增加了 24 s。
尽管 MBIR 具有较强的降噪和改善 GM-WM 对比度的性能,但与 HIR 相比,其噪声纹理、锐度和主观可接受性降低,重建时间延长,这可能会限制其在临床中的可行性。