Suppr超能文献

可解释不确定性感知卷积递归神经网络在不规则医学时间序列中的应用。

Explainable Uncertainty-Aware Convolutional Recurrent Neural Network for Irregular Medical Time Series.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Oct;32(10):4665-4679. doi: 10.1109/TNNLS.2020.3025813. Epub 2021 Oct 5.

Abstract

Influenced by the dynamic changes in the severity of illness, patients usually take examinations in hospitals irregularly, producing a large volume of irregular medical time-series data. Performing diagnosis prediction from the irregular medical time series is challenging because the intervals between consecutive records significantly vary along time. Existing methods often handle this problem by generating regular time series from the irregular medical records without considering the uncertainty in the generated data, induced by the varying intervals. Thus, a novel Uncertainty-Aware Convolutional Recurrent Neural Network (UA-CRNN) is proposed in this article, which introduces the uncertainty information in the generated data to boost the risk prediction. To tackle the complex medical time series with subseries of different frequencies, the uncertainty information is further incorporated into the subseries level rather than the whole sequence to seamlessly adjust different time intervals. Specifically, a hierarchical uncertainty-aware decomposition layer (UADL) is designed to adaptively decompose time series into different subseries and assign them proper weights in accordance with their reliabilities. Meanwhile, an Explainable UA-CRNN (eUA-CRNN) is proposed to exploit filters with different passbands to ensure the unity of components in each subseries and the diversity of components in different subseries. Furthermore, eUA-CRNN incorporates with an uncertainty-aware attention module to learn attention weights from the uncertainty information, providing the explainable prediction results. The extensive experimental results on three real-world medical data sets illustrate the superiority of the proposed method compared with the state-of-the-art methods.

摘要

受疾病严重程度动态变化的影响,患者通常在医院进行不定期检查,产生了大量不规则的医疗时间序列数据。由于连续记录之间的间隔随时间显著变化,因此从不规则的医疗时间序列中进行诊断预测具有挑战性。现有方法通常通过从不规则的病历中生成规则的时间序列来处理这个问题,而不考虑由变化的间隔引起的生成数据中的不确定性。因此,本文提出了一种新的不确定性感知卷积递归神经网络(UA-CRNN),它引入了生成数据中的不确定性信息,以提高风险预测能力。为了处理具有不同频率子序列的复杂医疗时间序列,不确定性信息进一步被纳入子序列级别,而不是整个序列中,以无缝调整不同的时间间隔。具体来说,设计了一个分层不确定性感知分解层(UADL),以自适应地将时间序列分解为不同的子序列,并根据其可靠性为它们分配适当的权重。同时,提出了可解释的 UA-CRNN(eUA-CRNN),利用具有不同通带的滤波器来确保每个子序列中的组件的统一性和不同子序列中的组件的多样性。此外,eUA-CRNN 结合了不确定性感知注意力模块,从不确定性信息中学习注意力权重,提供可解释的预测结果。在三个真实医疗数据集上的广泛实验结果表明,与最先进的方法相比,所提出的方法具有优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验