Suppr超能文献

基于静态和动态健康数据的重要性感知个性化学习的早期风险预测

Importance-aware personalized learning for early risk prediction using static and dynamic health data.

机构信息

Department of Computer Science, Hong Kong Baptist University, Hong Kong, Hong Kong.

School of Computer Science, Wuhan University, Wuhan, China.

出版信息

J Am Med Inform Assoc. 2021 Mar 18;28(4):713-726. doi: 10.1093/jamia/ocaa306.

Abstract

OBJECTIVE

Accurate risk prediction is important for evaluating early medical treatment effects and improving health care quality. Existing methods are usually designed for dynamic medical data, which require long-term observations. Meanwhile, important personalized static information is ignored due to the underlying uncertainty and unquantifiable ambiguity. It is urgent to develop an early risk prediction method that can adaptively integrate both static and dynamic health data.

MATERIALS AND METHODS

Data were from 6367 patients with Peptic Ulcer Bleeding between 2007 and 2016. This article develops a novel End-to-end Importance-Aware Personalized Deep Learning Approach (eiPDLA) to achieve accurate early clinical risk prediction. Specifically, eiPDLA introduces a long short-term memory with temporal attention to learn sequential dependencies from time-stamped records and simultaneously incorporating a residual network with correlation attention to capture their influencing relationship with static medical data. Furthermore, a new multi-residual multi-scale network with the importance-aware mechanism is designed to adaptively fuse the learned multisource features, automatically assigning larger weights to important features while weakening the influence of less important features.

RESULTS

Extensive experimental results on a real-world dataset illustrate that our method significantly outperforms the state-of-the-arts for early risk prediction under various settings (eg, achieving an AUC score of 0.944 at 1 year ahead of risk prediction). Case studies indicate that the achieved prediction results are highly interpretable.

CONCLUSION

These results reflect the importance of combining static and dynamic health data, mining their influencing relationship, and incorporating the importance-aware mechanism to automatically identify important features. The achieved accurate early risk prediction results save precious time for doctors to timely design effective treatments and improve clinical outcomes.

摘要

目的

准确的风险预测对于评估早期医疗效果和提高医疗质量非常重要。现有的方法通常是为动态医疗数据设计的,这些数据需要长期观察。同时,由于潜在的不确定性和不可量化的模糊性,重要的个性化静态信息被忽略了。因此,迫切需要开发一种能够自适应地整合静态和动态健康数据的早期风险预测方法。

材料和方法

数据来自 2007 年至 2016 年间的 6367 例消化性溃疡出血患者。本文开发了一种新颖的端到端重要性感知个性化深度学习方法(eiPDLA),以实现准确的早期临床风险预测。具体来说,eiPDLA 引入了一个具有时间注意力的长短期记忆网络,从时间戳记录中学习序列依赖关系,同时引入了一个具有相关性注意力的残差网络,以捕获它们与静态医疗数据的影响关系。此外,设计了一种具有重要性感知机制的新的多残差多尺度网络,自适应地融合学习到的多源特征,自动为重要特征分配更大的权重,同时削弱不太重要特征的影响。

结果

在真实数据集上的广泛实验结果表明,我们的方法在各种设置下(例如,在提前 1 年进行风险预测时,AUC 评分为 0.944),显著优于最先进的早期风险预测方法。案例研究表明,所得到的预测结果具有高度的可解释性。

结论

这些结果反映了结合静态和动态健康数据、挖掘它们的影响关系以及纳入重要性感知机制以自动识别重要特征的重要性。所实现的准确早期风险预测结果为医生及时设计有效治疗方案和改善临床结果节省了宝贵的时间。

相似文献

6
High-Risk Prediction of Cardiovascular Diseases via Attention-Based Deep Neural Networks.基于注意力机制的深度神经网络进行心血管疾病的高危预测。
IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):1093-1105. doi: 10.1109/TCBB.2019.2935059. Epub 2021 Jun 3.

本文引用的文献

7
AI in Health: State of the Art, Challenges, and Future Directions.健康领域的人工智能:现状、挑战与未来方向。
Yearb Med Inform. 2019 Aug;28(1):16-26. doi: 10.1055/s-0039-1677908. Epub 2019 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验