Suppr超能文献

在有鳞目爬行动物几何形态测量学中鳞片地标点的应用:关于同源性的评论

Use of scalation landmarks in geometric morphometrics of squamate reptiles: a comment on homology.

作者信息

Meik Jesse M, Lawing A Michelle, Watson Jessica A

机构信息

Department of Biological Sciences, Tarleton State University, Stephenville, TX USA.

出版信息

Zootaxa. 2020 Jul 17;4816(3):zootaxa.4816.3.12. doi: 10.11646/zootaxa.4816.3.12.

Abstract

Geometric morphometrics (GM) is a powerful analytical approach for evaluating phenotypic variation relevant to taxonomy and systematics, and as with any statistical methodology, requires adherence to fundamental assumptions for inferences to be strictly valid. An important consideration for GM is how landmark configurations, which represent sets of anatomical loci for evaluating shape variation through Cartesian coordinates, relate to underlying homology (Zelditch et al. 1995; Polly 2008). Perhaps more so than with traditional morphometrics, anatomical homology is a crucial assumption for GM because of the mathematical and biological interpretations associated with shape change depicted by deformation grids, such as the thin plate spline (Klingenberg 2008; Zelditch et al. 2012). GM approaches are often used to analyze shapes or outlines of structures, which are not necessarily related to common ancestry, and in this respect GM approaches that use linear semi-landmarks and related methods are particularly amenable to evaluating primary homology, or raw similarity between structures (De Pinna 1991; Palci Lee 2019). This relaxed interpretation of homology that focuses more on recognizable and repeatable landmarks is defensible so long as authors are clear regarding the purpose of the analyses and in defining their landmark configurations (Palci Lee 2019). Secondary homology, or similarity due to common ancestry, can also be represented with GM methods and is often assumed to be reflected in fixed Type 1 (juxtaposition of tissues) or Type 2 (self-evident geometry) landmarks (Bookstein 1991).

摘要

几何形态测量学(GM)是一种强大的分析方法,用于评估与分类学和系统学相关的表型变异,并且与任何统计方法一样,需要遵循基本假设才能使推断严格有效。GM的一个重要考虑因素是地标配置(通过笛卡尔坐标评估形状变异的解剖学位点集)与潜在的同源性之间的关系(泽尔迪奇等人,1995年;波利,2008年)。与传统形态测量学相比,解剖学同源性可能更是GM的关键假设,因为与薄板样条等变形网格所描绘的形状变化相关的数学和生物学解释(克林根伯格,2008年;泽尔迪奇等人,2012年)。GM方法经常用于分析结构的形状或轮廓,这些形状或轮廓不一定与共同祖先相关,在这方面,使用线性半地标和相关方法的GM方法特别适合评估初级同源性,即结构之间的原始相似性(德平纳,1991年;帕尔奇·李,2019年)。只要作者清楚分析的目的并定义其地标配置,这种更侧重于可识别和可重复地标的同源性宽松解释就是合理的(帕尔奇·李,2019年)。二级同源性,即由于共同祖先导致的相似性,也可以用GM方法表示,并且通常被认为反映在固定的1型(组织并置)或2型(自明几何)地标中(布克斯坦,1991年)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验