Suppr超能文献

针对无地标形态的标志性方法:轮廓形状群体差异的形态测量学

Landmark methods for forms without landmarks: morphometrics of group differences in outline shape.

作者信息

Bookstein F L

机构信息

Institute of Gerontology, University of Michigan, Ann Arbor 48109-2007, USA.

出版信息

Med Image Anal. 1997 Apr;1(3):225-43. doi: 10.1016/s1361-8415(97)85012-8.

Abstract

Morphometrics, a new branch of statistics, combines tools from geometry, computer graphics and biometrics in techniques for the multivariate analysis of biological shape variation. Although medical image analysts typically prefer to represent scenes by way of curving outlines or surfaces, the most recent developments in this associated statistical methodology have emphasized the domain of landmark data: size and shape of configurations of discrete, named points in two or three dimensions. This paper introduces a combination of Procrustes analysis and thin-plate splines, the two most powerful tools of landmark-based morphometrics, for multivariate analysis of curving outlines in samples of biomedical images. The thin-plate spline is used to assign point-to-point correspondences, called semi-landmarks, between curves of similar but variable shape, while the standard algorithm for Procrustes shape averages and shape coordinates is altered to accord with the ways in which semi-landmarks formally differ from more traditional landmark loci. Subsequent multivariate statistics and visualization proceed mainly as in the landmark-based methods. The combination provides a range of complementary filters, from high pass to low pass, for effects on outline shape in grouped studies. The low-pass version is based on the spectrum of the spline, the high pass, on a familiar special case of Procrustes analysis. This hybrid method is demonstrated in a comparison of the shape of the corpus callosum from mid-sagittal sections of MRI of 25 human brains, 12 normal and 13 with schizophrenia.

摘要

形态测量学是统计学的一个新分支,它将来自几何学、计算机图形学和生物特征识别的工具结合起来,用于对生物形状变异进行多变量分析。尽管医学图像分析师通常更喜欢通过弯曲的轮廓或表面来表示场景,但这种相关统计方法的最新发展强调了地标数据领域:二维或三维中离散的、命名点的配置的大小和形状。本文介绍了基于地标形态测量学中最强大的两种工具——普氏分析和薄板样条的结合,用于对生物医学图像样本中的弯曲轮廓进行多变量分析。薄板样条用于在形状相似但可变的曲线之间分配点对点对应关系,即所谓的半地标,同时对普氏形状平均值和形状坐标的标准算法进行了修改,以符合半地标与更传统的地标位点在形式上的差异。随后的多变量统计和可视化主要按照基于地标的方法进行。这种结合提供了一系列从高通到低通的互补滤波器,用于分组研究中对轮廓形状的影响。低通版本基于样条的频谱,高通版本基于普氏分析的一个常见特殊情况。在对25个人脑(12个正常人和13个精神分裂症患者)的MRI矢状面中部胼胝体形状进行比较时,展示了这种混合方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验