Pelagios Kakunjá A.C., La Paz, Mexico.
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Mexico.
J Fish Biol. 2021 Mar;98(3):865-869. doi: 10.1111/jfb.14589. Epub 2020 Oct 27.
In this study we present the first attempt at modelling the feeding behaviour of whale sharks using a machine learning analytical method. A total of eight sharks were monitored with tri-axial accelerometers and their foraging behaviours were visually observed. Our results highlight that the random forest model is a valid and robust approach to predict the feeding behaviour of the whale shark. In conclusion this novel approach exposes the practicality of this method to serve as a conservation tool and the capability it offers in monitoring potential disturbances of the species.
在这项研究中,我们首次尝试使用机器学习分析方法来模拟鲸鲨的摄食行为。共有八只鲨鱼被佩戴三轴加速度计进行监测,并对其觅食行为进行了可视化观察。我们的研究结果表明,随机森林模型是一种预测鲸鲨摄食行为的有效且稳健的方法。总之,这种新方法证明了该方法作为保护工具的实用性,以及它在监测该物种潜在干扰方面的能力。