Suppr超能文献

使用三轴加速度计评估机器学习模型识别港口杰克逊鲨鱼行为

Assessment of Machine Learning Models to Identify Port Jackson Shark Behaviours Using Tri-Axial Accelerometers.

机构信息

Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.

Marine Ecosystems Team, Wellington University, Wellington 6012, New Zealand.

出版信息

Sensors (Basel). 2020 Dec 11;20(24):7096. doi: 10.3390/s20247096.

Abstract

Movement ecology has traditionally focused on the movements of animals over large time scales, but, with advancements in sensor technology, the focus can become increasingly fine scale. Accelerometers are commonly applied to quantify animal behaviours and can elucidate fine-scale (<2 s) behaviours. Machine learning methods are commonly applied to animal accelerometry data; however, they require the trial of multiple methods to find an ideal solution. We used tri-axial accelerometers (10 Hz) to quantify four behaviours in Port Jackson sharks (): two fine-scale behaviours (<2 s)-(1) vertical swimming and (2) chewing as proxy for foraging, and two broad-scale behaviours (>2 s-mins)-(3) resting and (4) swimming. We used validated data to calculate 66 summary statistics from tri-axial accelerometry and assessed the most important features that allowed for differentiation between the behaviours. One and two second epoch testing sets were created consisting of 10 and 20 samples from each behaviour event, respectively. We developed eight machine learning models to assess their overall accuracy and behaviour-specific accuracy (one classification tree, five ensemble learners and two neural networks). The support vector machine model classified the four behaviours better when using the longer 2 s time epoch (-measure 89%; macro-averaged -measure: 90%). Here, we show that this support vector machine (SVM) model can reliably classify both fine- and broad-scale behaviours in Port Jackson sharks.

摘要

运动生态学传统上侧重于动物在大时间尺度上的运动,但随着传感器技术的进步,其焦点可以变得越来越精细。加速度计常用于量化动物的行为,并可以阐明细微尺度(<2 秒)的行为。机器学习方法通常应用于动物加速度计数据;然而,它们需要多次尝试不同的方法来找到理想的解决方案。我们使用三轴加速度计(10 Hz)来量化杰克逊港鲨鱼的四种行为():两种细微尺度行为(<2 秒)-(1)垂直游泳和(2)咀嚼作为觅食的代理,以及两种广泛尺度行为(>2 秒-分钟)-(3)休息和(4)游泳。我们使用经过验证的数据从三轴加速度计计算了 66 个摘要统计数据,并评估了允许区分行为的最重要特征。分别从每个行为事件创建了 10 个和 20 个样本的 1 秒和 2 秒的测试集。我们开发了八个机器学习模型来评估它们的整体准确性和特定行为的准确性(一个分类树、五个集成学习者和两个神经网络)。支持向量机模型在使用较长的 2 秒时间时更好地分类了四种行为(度量值 89%;宏平均度量值:90%)。在这里,我们表明,这种支持向量机(SVM)模型可以可靠地对杰克逊港鲨鱼的细微和广泛行为进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73fc/7763149/266d4fcec7ad/sensors-20-07096-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验