Suppr超能文献

使用人 APOBEC3A 脱氨酶进行可编程 C 到 U RNA 编辑。

Programmable C-to-U RNA editing using the human APOBEC3A deaminase.

机构信息

School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

EMBO J. 2020 Nov 16;39(22):e104741. doi: 10.15252/embj.2020104741. Epub 2020 Oct 15.

Abstract

Programmable RNA cytidine deamination has recently been achieved using a bifunctional editor (RESCUE-S) capable of deaminating both adenine and cysteine. Here, we report the development of "CURE", the first cytidine-specific C-to-U RNA Editor. CURE comprises the cytidine deaminase enzyme APOBEC3A fused to dCas13 and acts in conjunction with unconventional guide RNAs (gRNAs) designed to induce loops at the target sites. Importantly, CURE does not deaminate adenosine, enabling the high-specificity versions of CURE to create fewer missense mutations than RESCUE-S at the off-targets transcriptome-wide. The two editing approaches exhibit overlapping editing motif preferences, with CURE and RESCUE-S being uniquely able to edit UCC and AC motifs, respectively, while they outperform each other at different subsets of the UC targets. Finally, a nuclear-localized version of CURE, but not that of RESCUE-S, can efficiently edit nuclear RNAs. Thus, CURE and RESCUE are distinct in design and complementary in utility.

摘要

最近,使用一种能够脱氨酶腺嘌呤和半胱氨酸的双功能编辑器(RESCUE-S)实现了可编程 RNA 胞嘧啶脱氨酶。在这里,我们报告了“CURE”的开发,这是第一个胞嘧啶特异性 C 到 U RNA 编辑器。CURE 由胞嘧啶脱氨酶酶 APOBEC3A 与 dCas13 融合而成,并与设计用于在靶位点诱导环的非常规指导 RNA(gRNA)一起作用。重要的是,CURE 不会脱氨酶腺苷,使 CURE 的高特异性版本在全转录组的非靶标上产生的错义突变比 RESCUE-S 少。这两种编辑方法表现出重叠的编辑基序偏好,CURE 和 RESCUE-S 分别能够编辑 UCC 和 AC 基序,而它们在 UC 靶标的不同子集上表现优于彼此。最后,CURE 的核定位版本,但不是 RESCUE-S 的核定位版本,能够有效地编辑核 RNA。因此,CURE 和 RESCUE 在设计上是不同的,在用途上是互补的。

相似文献

1
Programmable C-to-U RNA editing using the human APOBEC3A deaminase.
EMBO J. 2020 Nov 16;39(22):e104741. doi: 10.15252/embj.2020104741. Epub 2020 Oct 15.
2
Improvement of C-to-U RNA editing using an artificial MS2-APOBEC system.
Biotechnol J. 2024 Jan;19(1):e2300321. doi: 10.1002/biot.202300321. Epub 2023 Dec 5.
3
A cytosine deaminase for programmable single-base RNA editing.
Science. 2019 Jul 26;365(6451):382-386. doi: 10.1126/science.aax7063. Epub 2019 Jul 11.
4
Creating RNA Specific C-to-U Editase from APOBEC3A by Separation of Its Activities on DNA and RNA Substrates.
ACS Synth Biol. 2021 May 21;10(5):1106-1115. doi: 10.1021/acssynbio.0c00627. Epub 2021 May 2.
5
Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes.
RNA Biol. 2017 May 4;14(5):603-610. doi: 10.1080/15476286.2016.1184387. Epub 2016 May 5.
6
APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages.
Nat Commun. 2015 Apr 21;6:6881. doi: 10.1038/ncomms7881.
7
Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences.
BMC Biol. 2021 Feb 18;19(1):34. doi: 10.1186/s12915-020-00879-0.
8
Unraveling the Enzyme-Substrate Properties for APOBEC3A-Mediated RNA Editing.
J Mol Biol. 2023 Sep 1;435(17):168198. doi: 10.1016/j.jmb.2023.168198. Epub 2023 Jul 11.
9
Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
Nature. 2019 May;569(7756):433-437. doi: 10.1038/s41586-019-1161-z. Epub 2019 Apr 17.

引用本文的文献

2
Programmable RNA acetylation with CRISPR-Cas13.
Nat Chem Biol. 2025 Jun 2. doi: 10.1038/s41589-025-01922-3.
3
Harnessing RNA base editing for diverse applications in RNA biology and RNA therapeutics.
Adv Biotechnol (Singap). 2025 Apr 8;3(2):11. doi: 10.1007/s44307-025-00063-x.
5
Site-Selective Modification and Labeling of Native RNA.
Chemistry. 2025 Feb 25;31(12):e202404244. doi: 10.1002/chem.202404244. Epub 2025 Feb 9.
6
A Manual for Genome and Transcriptome Engineering.
IEEE Rev Biomed Eng. 2025;18:250-267. doi: 10.1109/RBME.2024.3494715. Epub 2025 Jan 28.
7
Precision Transcriptome Editing.
ACS Synth Biol. 2024 Nov 15;13(11):3487-3496. doi: 10.1021/acssynbio.4c00183. Epub 2024 Oct 22.
8
CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury.
Mol Ther. 2024 Nov 6;32(11):3974-3989. doi: 10.1016/j.ymthe.2024.09.008. Epub 2024 Sep 7.
9
CRISPR-Cas13: Pioneering RNA Editing for Nucleic Acid Therapeutics.
Biodes Res. 2024 Sep 3;6:0041. doi: 10.34133/bdr.0041. eCollection 2024.
10
Therapeutic targeting of RNA for neurological and neuromuscular disease.
Genes Dev. 2024 Sep 19;38(15-16):698-717. doi: 10.1101/gad.351612.124.

本文引用的文献

1
A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects.
Nat Methods. 2020 Jun;17(6):600-604. doi: 10.1038/s41592-020-0832-x. Epub 2020 May 18.
3
Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors.
Nat Biotechnol. 2020 May;38(5):620-628. doi: 10.1038/s41587-020-0414-6. Epub 2020 Feb 10.
4
Step aside CRISPR, RNA editing is taking off.
Nature. 2020 Feb;578(7793):24-27. doi: 10.1038/d41586-020-00272-5.
5
Site-directed RNA editing (SDRE): Off-target effects and their countermeasures.
J Genet Genomics. 2019 Nov 20;46(11):531-535. doi: 10.1016/j.jgg.2019.11.005. Epub 2019 Nov 27.
6
A cytosine deaminase for programmable single-base RNA editing.
Science. 2019 Jul 26;365(6451):382-386. doi: 10.1126/science.aax7063. Epub 2019 Jul 11.
7
Programmable RNA-Guided RNA Effector Proteins Built from Human Parts.
Cell. 2019 Jun 27;178(1):122-134.e12. doi: 10.1016/j.cell.2019.05.049. Epub 2019 Jun 20.
8
EditR: A Method to Quantify Base Editing from Sanger Sequencing.
CRISPR J. 2018 Jun;1(3):239-250. doi: 10.1089/crispr.2018.0014.
9
Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos.
Science. 2019 Apr 19;364(6437):289-292. doi: 10.1126/science.aav9973. Epub 2019 Feb 28.
10
In vivo RNA editing of point mutations via RNA-guided adenosine deaminases.
Nat Methods. 2019 Mar;16(3):239-242. doi: 10.1038/s41592-019-0323-0. Epub 2019 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验