Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla, Spain.
Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Sevilla, Spain.
Hum Mutat. 2020 Dec;41(12):2073-2077. doi: 10.1002/humu.24120. Epub 2020 Oct 14.
Spinal muscular atrophy (SMA) is a severe neuromuscular autosomal recessive disorder affecting 1/10,000 live births. Most SMA patients present homozygous deletion of SMN1, while the vast majority of SMA carriers present only a single SMN1 copy. The sequence similarity between SMN1 and SMN2, and the complexity of the SMN locus makes the estimation of the SMN1 copy-number by next-generation sequencing (NGS) very difficult. Here, we present SMAca, the first python tool to detect SMA carriers and estimate the absolute SMN1 copy-number using NGS data. Moreover, SMAca takes advantage of the knowledge of certain variants specific to SMN1 duplication to also identify silent carriers. This tool has been validated with a cohort of 326 samples from the Navarra 1000 Genomes Project (NAGEN1000). SMAca was developed with a focus on execution speed and easy installation. This combination makes it especially suitable to be integrated into production NGS pipelines. Source code and documentation are available at https://www.github.com/babelomics/SMAca.
脊髓性肌萎缩症(SMA)是一种严重的神经肌肉常染色体隐性遗传病,每 10000 例活产儿中就有 1 例患病。大多数 SMA 患者表现为 SMN1 基因纯合缺失,而绝大多数 SMA 携带者仅携带 1 份 SMN1 拷贝。SMN1 和 SMN2 之间的序列相似性,以及 SMN 基因座的复杂性,使得使用下一代测序(NGS)来估计 SMN1 拷贝数变得非常困难。在这里,我们介绍了 SMAca,这是第一个使用 NGS 数据来检测 SMA 携带者并估计绝对 SMN1 拷贝数的 Python 工具。此外,SMAca 还利用了某些特定于 SMN1 重复的变体的知识来识别沉默携带者。该工具已经在纳瓦拉 1000 基因组计划(NAGEN1000)的 326 个样本队列中得到了验证。SMAca 的开发重点是执行速度和易于安装。这种组合使其特别适合集成到生产 NGS 管道中。源代码和文档可在 https://www.github.com/babelomics/SMAca 上获得。