Suppr超能文献

多模态影像与人工智能在肿瘤特征刻画中的应用:现状与未来展望。

Multimodality Imaging and Artificial Intelligence for Tumor Characterization: Current Status and Future Perspective.

机构信息

IHU of Strasbourg, Strasbourg, France; Inserm & University of Strasbourg UMR-S1110, Strasbourg, France; Faculty of Medicine, University of Paris, Paris, France.

IHU of Strasbourg, Strasbourg, France; Icube Laboratory, University of Strasbourg, Strasbourg, France.

出版信息

Semin Nucl Med. 2020 Nov;50(6):541-548. doi: 10.1053/j.semnuclmed.2020.07.003. Epub 2020 Aug 2.

Abstract

Research in medical imaging has yet to do to achieve precision oncology. Over the past 30 years, only the simplest imaging biomarkers (RECIST, SUV,…) have become widespread clinical tools. This may be due to our inability to accurately characterize tumors and monitor intratumoral changes in imaging. Artificial intelligence, through machine learning and deep learning, opens a new path in medical research because it can bring together a large amount of heterogeneous data into the same analysis to reach a single outcome. Supervised or unsupervised learning may lead to new paradigms by identifying unrevealed structural patterns across data. Deep learning will provide human-free, undefined upstream, reproducible, and automated quantitative imaging biomarkers. Since tumor phenotype is driven by its genotype and thus indirectly defines tumoral progression, tumor characterization using machine learning and deep learning algorithms will allow us to monitor molecular expression noninvasively, anticipate therapeutic failure, and lead therapeutic management. To follow this path, quality standards have to be set: standardization of imaging acquisition as it has been done in the field of biology, transparency of the model development as it should be reproducible by different institutions, validation, and testing through a high-quality process using large and complex open databases and better interpretability of these algorithms.

摘要

医学影像学的研究尚未实现精准肿瘤学。在过去的 30 年中,只有最简单的成像生物标志物(RECIST、SUV 等)已成为广泛的临床工具。这可能是由于我们无法准确地描述肿瘤并在影像学中监测肿瘤内的变化。人工智能通过机器学习和深度学习为医学研究开辟了新途径,因为它可以将大量异构数据汇集到同一个分析中,以达到单一的结果。监督或无监督学习可以通过识别数据中的未揭示结构模式来产生新的范例。深度学习将提供无人工干预、无定义的上游、可重复和自动化的定量成像生物标志物。由于肿瘤表型受其基因型驱动,因此间接定义了肿瘤的进展,因此使用机器学习和深度学习算法对肿瘤进行特征描述将使我们能够非侵入性地监测分子表达,预测治疗失败,并指导治疗管理。为了遵循这条道路,必须制定质量标准:就像在生物学领域那样对成像采集进行标准化,模型开发的透明度应是可由不同机构重现的,通过使用大型复杂的开放数据库和更好地解释这些算法的高质量流程进行验证和测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验