Krivec Tadej, Papa Gregor, Kocijan Juš
Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, Slovenia.
Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia; University of Nova Gorica, Vipavska 13, Nova Gorica, Slovenia.
ISA Trans. 2021 Mar;109:141-151. doi: 10.1016/j.isatra.2020.10.011. Epub 2020 Oct 9.
Gaussian processes (GP) regression is a powerful probabilistic tool for modeling nonlinear dynamical systems. The downside of the method is its cubic computational complexity with respect to the training data that can be partially reduced using pseudo-inputs. The dynamics can be represented with an autoregressive model, which simplifies the training to that of the static case. When simulating an autoregressive model, the uncertainty is propagated through a nonlinear function and the simulation cannot be evaluated in closed-form. This paper combines the variational methods of GP approximations with a nonlinear autoregressive model with exogenous inputs (NARX) to form variational GP (VGP-NARX) models. We show how VGP-NARX models, on average, better approximate a full GP-NARX model than more commonly used GP-NARX (FITC) model on 10 chaotic time-series. The modeling capabilities of VGP-NARX models are compared with the existing approaches on two benchmarks for modeling nonlinear dynamical systems. The advantage of general-purpose computing on graphics processing units (GPGPU) for Monte Carlo simulation on large validation data sets is addressed.
高斯过程(GP)回归是一种用于对非线性动力系统进行建模的强大概率工具。该方法的缺点是其计算复杂度相对于训练数据呈立方级,不过使用伪输入可以部分降低这一复杂度。动力学可以用自回归模型来表示,这将训练简化为静态情况的训练。在模拟自回归模型时,不确定性通过非线性函数进行传播,且无法以封闭形式对模拟进行评估。本文将GP近似的变分方法与具有外部输入的非线性自回归模型(NARX)相结合,以形成变分GP(VGP-NARX)模型。我们展示了在10个混沌时间序列上,VGP-NARX模型平均而言比更常用的GP-NARX(FITC)模型能更好地逼近完整的GP-NARX模型。在两个用于非线性动力系统建模的基准测试中,将VGP-NARX模型的建模能力与现有方法进行了比较。文中还讨论了图形处理单元(GPGPU)上的通用计算在大型验证数据集的蒙特卡罗模拟中的优势。