Department of Rehabilitation, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China.
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China.
Front Public Health. 2021 May 21;9:685596. doi: 10.3389/fpubh.2021.685596. eCollection 2021.
There is uncertainty in the neuromusculoskeletal system, and deterministic models cannot describe this significant presence of uncertainty, affecting the accuracy of model predictions. In this paper, a knee joint angle prediction model based on surface electromyography (sEMG) signals is proposed. To address the instability of EMG signals and the uncertainty of the neuromusculoskeletal system, a non-parametric probabilistic model is developed using a Gaussian process model combined with the physiological properties of muscle activation. Since the neuromusculoskeletal system is a dynamic system, the Gaussian process model is further combined with a non-linear autoregressive with eXogenous inputs (NARX) model to create a Gaussian process autoregression model. In this paper, the normalized root mean square error (NRMSE) and the correlation coefficient (CC) are compared between the joint angle prediction results of the Gaussian process autoregressive model prediction and the actual joint angle under three test scenarios: speed-dependent, multi-speed and speed-independent. The mean of NRMSE and the mean of CC for all test scenarios in the healthy subjects dataset and the hemiplegic patients dataset outperform the results of the Gaussian process model, with significant differences ( < 0.05 and < 0.05, < 0.05 and < 0.05). From the perspective of uncertainty, a non-parametric probabilistic model for joint angle prediction is established by using Gaussian process autoregressive model to achieve accurate prediction of human movement.
在神经肌肉骨骼系统中存在不确定性,确定性模型无法描述这种显著的不确定性存在,从而影响模型预测的准确性。本文提出了一种基于表面肌电(sEMG)信号的膝关节角度预测模型。为了解决肌电信号的不稳定性和神经肌肉骨骼系统的不确定性,使用结合肌肉激活生理特性的高斯过程模型开发了一种非参数概率模型。由于神经肌肉骨骼系统是一个动态系统,因此将高斯过程模型进一步与具有外部输入的非线性自回归(NARX)模型相结合,以创建高斯过程自回归模型。在本文中,在三种测试场景下(速度相关、多速度和速度无关),将高斯过程自回归模型预测的关节角度预测结果与实际关节角度的归一化均方根误差(NRMSE)和相关系数(CC)进行了比较:速度相关、多速度和速度无关。在健康受试者数据集和偏瘫患者数据集中,所有测试场景的 NRMSE 的平均值和 CC 的平均值均优于高斯过程模型的结果,差异具有统计学意义( < 0.05 和 < 0.05, < 0.05 和 < 0.05)。从不确定性的角度出发,通过使用高斯过程自回归模型建立了关节角度预测的非参数概率模型,实现了对人体运动的准确预测。