Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada.
J Neurosci. 2020 Nov 4;40(45):8652-8668. doi: 10.1523/JNEUROSCI.1636-20.2020. Epub 2020 Oct 15.
Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain. A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.
抑制性中间神经元以特定的比例和分布整合到发育中的回路中。在新皮层中,抑制性网络的形成与 GABA 能中间神经元的三分之一凋亡消除同时发生。选择中间神经元存活或死亡的细胞表面分子尚不清楚。在这里,我们报告说,聚集原钙黏蛋白(cPCDHs)的成员控制 GABA 能中间神经元在发育调节性细胞死亡期间的存活。条件性删除编码 γ-原钙黏蛋白的基因簇从雄性或雌性发育中的 GABA 能神经元中,导致多个脑区抑制性群体的严重丧失,并导致癫痫等神经缺陷。通过专注于新皮层和小脑皮层,我们证明,抑制性中间神经元的减少是由于程序性细胞死亡(PCD)的关键产后期间凋亡增加所致。相比之下,皮质中间神经元(cIN)群体不受从锥体神经元或神经胶质细胞中去除 的影响。中间神经元的丧失与 突变中间神经元中 AKT 信号的降低相关,并且通过遗传阻断促凋亡因子 BAX 得到挽救。总之,这些发现将 PCDHGs 鉴定为选择抑制性中间神经元存活并调节 PCD 程度的存活的跨膜蛋白。我们提出,PCDHGs 通过控制发育中大脑中 GABA 能中间神经元群体的大小来促进抑制性网络的形成。建立适当的兴奋-抑制比例的关键步骤是通过细胞死亡调整神经元群体。在小鼠新皮层中,三分之一的 GABA 能中间神经元在出生后第一周通过 BAX 依赖性凋亡消除。中间神经元的细胞死亡受神经活动和存活途径的调节,但选择中间神经元存活或死亡的细胞表面分子尚不清楚。我们证明,钙黏蛋白超家族的成员,聚集的γ-原钙黏蛋白(PCDHGs),调节抑制性中间神经元的存活和细胞死亡的平衡。在小鼠中删除 会导致皮质和小脑的抑制性中间神经元丧失,并导致运动缺陷和癫痫发作。我们的发现为控制回路形成过程中抑制性中间神经元群体大小提供了分子基础。