Nakane Takumi, Lu Xuequan, Zhang Chao
University of Fukui, Fukui, Japan.
Deakin University, Melbourne, Victoria, Australia.
Comput Intell Neurosci. 2020 Sep 27;2020:8835852. doi: 10.1155/2020/8835852. eCollection 2020.
In evolutionary algorithms, genetic operators iteratively generate new offspring which constitute a potentially valuable set of search history. To boost the performance of offspring generation in the real-coded genetic algorithm (RCGA), in this paper, we propose to exploit the search history cached so far in an online style during the iteration. Specifically, survivor individuals over the past few generations are collected and stored in the archive to form the search history. We introduce a simple yet effective crossover model driven by the search history (abbreviated as SHX). In particular, the search history is clustered, and each cluster is assigned a score for SHX. In essence, the proposed SHX is a data-driven method which exploits the search history to perform offspring selection after the offspring generation. Since no additional fitness evaluations are needed, SHX is favorable for the tasks with limited budget or expensive fitness evaluations. We experimentally verify the effectiveness of SHX over 15 benchmark functions. Quantitative results show that our SHX can significantly enhance the performance of RCGA, in terms of both accuracy and convergence speed. Also, the induced additional runtime is negligible compared to the total processing time.
在进化算法中,遗传算子迭代地生成新的后代,这些后代构成了一组潜在有价值的搜索历史。为了提高实数编码遗传算法(RCGA)中后代生成的性能,在本文中,我们建议在迭代过程中以在线方式利用到目前为止缓存的搜索历史。具体而言,收集过去几代中的存活个体并存储在存档中以形成搜索历史。我们引入了一种由搜索历史驱动的简单而有效的交叉模型(简称为SHX)。特别地,对搜索历史进行聚类,并且为每个聚类分配一个用于SHX的分数。本质上,所提出的SHX是一种数据驱动的方法,它在后代生成之后利用搜索历史来进行后代选择。由于不需要额外的适应度评估,SHX对于预算有限或适应度评估成本高昂的任务是有利的。我们通过15个基准函数实验验证了SHX的有效性。定量结果表明,我们的SHX在准确性和收敛速度方面都可以显著提高RCGA的性能。此外,与总处理时间相比,引入的额外运行时间可以忽略不计。