Suppr超能文献

进化策略与实数编码遗传算法中自适应的比较研究

A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms.

作者信息

Kita H

机构信息

Faculty of University Evaluation and Research, National Institution for Academic Degrees, 3-29-1 Otsuka, Bunkyo, Tokyo 112-0012, Japan.

出版信息

Evol Comput. 2001 Summer;9(2):223-41. doi: 10.1162/106365601750190415.

Abstract

This paper discusses the self-adaptive mechanisms of evolution strategies (ES) and real-coded genetic algorithms (RCGA) for optimization in continuous search spaces. For multi-membered evolution strategies, a self-adaptive mechanism of mutation parameters has been proposed by Schwefel. It introduces parameters such as standard deviations of the normal distribution for mutation into the genetic code and lets them evolve by selection as well as the decision variables. In the RCGA, crossover or recombination is used mainly for search. It utilizes information on several individuals to generate novel search points, and therefore, it can generate offspring adaptively according to the distribution of parents without any adaptive parameters. The present paper discusses characteristics of these two self-adaptive mechanisms through numerical experiments. The self-adaptive characteristics such as translation, enlargement, focusing, and directing of the distribution of children generated by the ES and the RCGA are examined through experiments.

摘要

本文讨论了进化策略(ES)和实编码遗传算法(RCGA)在连续搜索空间中进行优化的自适应机制。对于多成员进化策略,施韦费尔提出了一种变异参数的自适应机制。它将诸如变异正态分布的标准差等参数引入遗传编码,并让它们与决策变量一样通过选择进行进化。在实编码遗传算法中,交叉或重组主要用于搜索。它利用多个个体的信息来生成新的搜索点,因此,它可以根据父代的分布自适应地生成子代,而无需任何自适应参数。本文通过数值实验讨论了这两种自适应机制的特点。通过实验研究了由进化策略和实编码遗传算法生成的子代分布的平移、放大、聚焦和定向等自适应特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验