Suppr超能文献

含硫属键的修饰 DNA 碱基对能否扩展遗传密码子?量子化学和分子动力学模拟的联合研究。

Can modified DNA base pairs with chalcogen bonding expand the genetic alphabet? A combined quantum chemical and molecular dynamics simulation study.

机构信息

Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.

Department of Chemistry and Biochemistry, University of Lethbridge, Alberta T1K 3M4, Canada.

出版信息

Phys Chem Chem Phys. 2020 Nov 7;22(41):23754-23765. doi: 10.1039/d0cp04921b. Epub 2020 Oct 16.

Abstract

A comprehensive (DFT and MD) computational study is presented with the goal to design and analyze model chalcogen-bonded modified nucleobase pairs that replace one (i.e., A:T, G:C, G:C) or two (G:C, X/X' = S, Se and Y/Y' = F, Cl, Br) Watson-Crick (WC) hydrogen bonds of the canonical A:T or G:C pair with chalcogen bond(s). DFT calculations on 18 base pair combinations that replace one WC hydrogen bond with a chalcogen bond reveal that the bases favorably interact in the gas phase (binding strengths up to -140 kJ mol) and water (up to -85 kJ mol). Although the remaining hydrogen bond(s) exhibits similar characteristics to those in the canonical base pairs, the structural features of the (Y-XO) chalcogen bond(s) change significantly with the identity of X and Y. The 36 doubly-substituted (G:C) base pairs have structural deviations from canonical G:C similar to those of the singly-substituted modifications (G:C or G:C). Furthermore, despite the replacement of two strong hydrogen bonds with chalcogen bonds, some G:C pairs possess comparable binding energies (up to -132 kJ mol in the gas phase and up to -92 kJ mol in water) to the most stable G:C or G:C pairs, as well as canonical G:C. More importantly, G:C-modified pairs containing X = Se (high polarizability) and Y = F (high electronegativity) are the most stable, with comparable or slightly larger (by up to 13 kJ mol) binding energies than G:C. Further characterization of the chalcogen bonding in all modified base pairs (AIM, NBO and NCI analyses) reveals that the differences in the binding energies of modified base pairs are mainly dictated by the differences in the strengths of their chalcogen bonds. Finally, MD simulations on DNA oligonucleotides containing the most stable chalcogen-bonded base pair from each of the four classifications (A:T, G:C, G:C and G:C) reveal that the singly-modified G:C pairs best retain the local helical structure and pairing stability to a greater extent than the modified A:T pair. Overall, our study identifies two (G:C and G:C) promising pairs that retain chalcogen bonding in DNA and should be synthesized and further explored in terms of their potential to expand the genetic alphabet.

摘要

本文进行了一项全面的(DFT 和 MD)计算研究,旨在设计和分析模型的硫属键合修饰碱基对,以替代一个(即 A:T、G:C、G:C)或两个(G:C、X/X'=S、Se 和 Y/Y'=F、Cl、Br)沃森-克里克(WC)氢键的规范 A:T 或 G:C 对与硫属键。对取代一个 WC 氢键的 18 个碱基对组合进行 DFT 计算表明,在气相(结合强度高达-140 kJ mol)和水中(高达-85 kJ mol),碱基对有利地相互作用。尽管剩余的氢键具有与规范碱基对相似的特征,但(Y-XO)硫属键的结构特征随 X 和 Y 的身份而显著变化。36 个双取代(G:C)碱基对与单取代修饰(G:C 或 G:C)相比,具有与规范 G:C 相似的结构偏差。此外,尽管用硫属键取代了两个强氢键,但一些 G:C 对具有可与最稳定的 G:C 或 G:C 对以及规范 G:C 相比拟的结合能(在气相中高达-132 kJ mol,在水中高达-92 kJ mol)。更重要的是,含有 X=Se(高极化率)和 Y=F(高电负性)的 G:C 修饰对是最稳定的,其结合能与 G:C 相似或略大(最大可达 13 kJ mol)。对所有修饰碱基对的硫属键进行进一步的特征化(AIM、NBO 和 NCI 分析)表明,修饰碱基对结合能的差异主要取决于它们的硫属键强度的差异。最后,对包含每个分类(A:T、G:C、G:C 和 G:C)中最稳定的硫属键合碱基对的 DNA 寡核苷酸进行 MD 模拟表明,单取代的 G:C 对在更大程度上更好地保留局部螺旋结构和配对稳定性,比修饰的 A:T 对更好。总体而言,我们的研究确定了两个(G:C 和 G:C)有前途的对,它们在 DNA 中保留了硫属键合,应该被合成,并进一步探索其扩展遗传密码的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验