Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, USA.
Muscle Nerve. 2021 Jan;63(1):127-140. doi: 10.1002/mus.27095. Epub 2020 Oct 28.
Electrical impedance myography (EIM) provides insight into muscle composition and structure. We sought to evaluate its use in a mouse obesity model characterized by myofiber atrophy.
We applied a prediction algorithm, ie, the least absolute shrinkage and selection operator (LASSO), to surface, needle array, and ex vivo EIM data from db/db and wild-type mice and assessed myofiber cross-sectional area (CSA) histologically and triglyceride (TG) content biochemically.
EIM data from all three modalities provided acceptable predictions of myofiber CSA with average root mean square error (RMSE) of 15% in CSA (ie, ±209 μm for a mean CSA of 1439 μm ) and TG content with RMSE of 30% in TG content (ie, ±7.3 nmol TG/mg muscle for a mean TG content of 25.4 nmol TG/mg muscle).
EIM combined with a predictive algorithm provides reasonable estimates of myofiber CSA and TG content without the need for biopsy.
电阻抗肌描记法(EIM)可深入了解肌肉成分和结构。我们试图评估其在以肌纤维萎缩为特征的肥胖小鼠模型中的应用。
我们应用了一种预测算法,即最小绝对收缩和选择算子(LASSO),对 db/db 型和野生型小鼠的表面、针状阵列和离体 EIM 数据进行了分析,并通过组织学评估肌纤维横截面积(CSA),通过生物化学评估甘油三酯(TG)含量。
所有三种模式的 EIM 数据均能对肌纤维 CSA 进行良好的预测,CSA 的平均均方根误差(RMSE)为 15%(即,平均 CSA 为 1439μm 时,误差为±209μm),TG 含量的 RMSE 为 30%(即,平均 TG 含量为 25.4nmol TG/mg 肌肉时,误差为±7.3nmol TG/mg 肌肉)。
EIM 结合预测算法可在无需活检的情况下,合理估计肌纤维 CSA 和 TG 含量。