UES Inc., Dayton, Ohio 45432, United States.
711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio 45433, United States.
ACS Appl Mater Interfaces. 2020 Oct 28;12(43):48329-48339. doi: 10.1021/acsami.0c13713. Epub 2020 Oct 16.
Assembling synthetic bioparts into simplified artificial cells holds tremendous promise for advancing studies into the synthesis, biosensing, and delivery of biomolecules. Currently, the most successful techniques for encapsulation of the transcription-translation machinery exploit compartmentalization in liposomal vesicles. However, improvements to these methods may increase permeability to polar molecules, functionalization of the membrane with biologically active elements, and encapsulation efficiency. Microcapsules prepared templated layer-by-layer (LbL) assembly using natural polymers have the potential to resolve some of the hurdles associated with liposomes. Here, we introduce a design for immobilizing DNA templates encoding translationally activated riboswitches and RNA aptamers into microcapsules prepared from regenerated silk fibroin protein. Adjusting several key parameters such as the presence of a polymer primer, concentration of silk protein, and DNA loadings during LbL assembly resulted in biocompatible, semipermeable, DNA-laden microcapsules. To preserve bioactivity, DNA was immobilized inside of the capsule membrane, which not only promoted stability during long-term storage at ambient conditions but also improved output response from spatially confined DNA-encoded sensing elements (SEs). Multiple copies of mRNA and GFPa1 protein were synthesized upon activation with specific analytes during transcription/translation reactions, demonstrating that selective permeability of silk microcapsules was essential for the diffusion of components of the cell-free system inside of the capsules. Further functionalization of capsule shells with gold nanoparticles (AuNPs) and antibodies (IgG) demonstrated the applicability of microcompartmentalized colloidal objects carrying SEs for remote sensing and/or targeted delivery. In the future, multifunctional, biocompatible silk-based microcapsules loaded with different RNA sensors can help advance the design of multiplexed biosensors tracking multiple biomarkers in complex media.
将合成生物部件组装成简化的人工细胞,对于推进合成、生物传感和生物分子传递的研究具有巨大的潜力。目前,封装转录-翻译机制最成功的技术是利用脂质体囊泡的分隔化。然而,对这些方法的改进可能会增加极性分子的通透性、膜的生物活性元素功能化和封装效率。使用天然聚合物模板层层(LbL)组装制备的微胶囊有可能解决与脂质体相关的一些障碍。在这里,我们引入了一种设计,用于将编码翻译激活的核酶和 RNA 适体的 DNA 模板固定在由再生丝素蛋白制备的微胶囊中。在 LbL 组装过程中调整几个关键参数,如聚合物引发剂的存在、丝蛋白浓度和 DNA 加载量,导致形成了具有生物相容性、半透性、载有 DNA 的微胶囊。为了保持生物活性,DNA 被固定在胶囊膜内,这不仅在环境条件下长期储存时促进了稳定性,而且还提高了空间限制的 DNA 编码传感元件(SE)的输出响应。在转录/翻译反应中,用特定的分析物激活后,合成了多个 mRNA 和 GFPa1 蛋白拷贝,证明了无细胞系统的成分在胶囊内的扩散对于丝微胶囊的选择性通透性是必不可少的。通过在胶囊壳上进一步功能化金纳米粒子(AuNPs)和抗体(IgG),证明了带有 SE 的胶体微胶囊的适用性,可用于远程传感和/或靶向输送。在未来,多功能、生物相容的丝基微胶囊可用于负载不同的 RNA 传感器,有助于推进设计用于在复杂介质中跟踪多个生物标志物的多路复用生物传感器。